28 research outputs found

    Mirror Symmetry and Other Miracles in Superstring Theory

    Get PDF
    The dominance of string theory in the research landscape of quantum gravity physics (despite any direct experimental evidence) can, I think, be justified in a variety of ways. Here I focus on an argument from mathematical fertility, broadly similar to Hilary Putnam's 'no miracles argument' that, I argue, many string theorists in fact espouse. String theory leads to many surprising, useful, and well-confirmed mathematical 'predictions' - here I focus on mirror symmetry. These predictions are made on the basis of general physical principles entering into string theory. The success of the mathematical predictions are then seen as evidence for framework that generated them. I attempt to defend this argument, but there are nonetheless some serious objections to be faced. These objections can only be evaded at a high (philosophical) price.Comment: For submission to a Foundations of Physics special issue on "Forty Years Of String Theory: Reflecting On the Foundations" (edited by G. `t Hooft, E. Verlinde, D. Dieks and S. de Haro)

    Should scientific realists be platonists?

    Get PDF
    Enhanced Indispensability Arguments (EIA) claim that Scientific Realists are committed to the existence of mathematical entities due to their reliance on Inference to the Best Explana- tion (IBE). Our central question concerns this purported parity of reasoning: do people who defend the EIA make an appropriate use of the resources of Scientific Realism (in particular, IBE) to achieve platonism? (§2) We argue that just because a variety of different inferential strategies can be employed by Scientific Realists does not mean that ontological conclusions concerning which things we should be Scientific Realists about are arrived at by any inferen- tial route which eschews causes (§3), and nor is there any direct pressure for Scientific Real- ists to change their inferential methods (§4). We suggest that in order to maintain inferential parity with Scientific Realism, proponents of EIA need to give details about how and in what way the presence of mathematical entities directly contribute to explanations (§5)

    Less is Different: Emergence and Reduction Reconciled

    Get PDF
    This is a companion to another paper. Together they rebut two widespread philosophical doctrines about emergence. The first, and main, doctrine is that emergence is incompatible with reduction. The second is that emergence is supervenience; or more exactly, supervenience without reduction. In the other paper, I develop these rebuttals in general terms, emphasising the second rebuttal. Here I discuss the situation in physics, emphasising the first rebuttal. I focus on limiting relations between theories and illustrate my claims with four examples, each of them a model or a framework for modelling, from well-established mathematics or physics. I take emergence as behaviour that is novel and robust relative to some comparison class. I take reduction as, essentially, deduction. The main idea of my first rebuttal will be to perform the deduction after taking a limit of some parameter. Thus my first main claim will be that in my four examples (and many others), we can deduce a novel and robust behaviour, by taking the limit, N goes to infinity, of a parameter N. But on the other hand, this does not show that that the infinite limit is "physically real", as some authors have alleged. For my second main claim is that in these same examples, there is a weaker, yet still vivid, novel and robust behaviour that occurs before we get to the limit, i.e. for finite N. And it is this weaker behaviour which is physically real. My examples are: the method of arbitrary functions (in probability theory); fractals (in geometry); superselection for infinite systems (in quantum theory); and phase transitions for infinite systems (in statistical mechanics).Comment: 75 p

    On the Mathematical Constitution and Explanation of Physical Facts

    Get PDF
    The mathematical nature of modern physics suggests that mathematics is bound to play some role in explaining physical reality. Yet, there is an ongoing controversy about the prospects of mathematical explanations of physical facts and their nature. A common view has it that mathematics provides a rich and indispensable language for representing physical reality but that, ontologically, physical facts are not mathematical and, accordingly, mathematical facts cannot really explain physical facts. In what follows, I challenge this common view. I argue that, in addition to its representational role, in modern physics mathematics is constitutive of the physical. Granted the mathematical constitution of the physical, I propose an account of explanation in which mathematical frameworks, structures, and facts explain physical facts. In this account, mathematical explanations of physical facts are either species of physical explanations of physical facts in which the mathematical constitution of some physical facts in the explanans are highlighted, or simply explanations in which the mathematical constitution of physical facts are highlighted. In highlighting the mathematical constitution of physical facts, mathematical explanations of physical facts deepen and increase the scope of the understanding of the explained physical facts. I argue that, unlike other accounts of mathematical explanations of physical facts, the proposed account is not subject to the objection that mathematics only represents the physical facts that actually do the explanation. I conclude by briefly considering the implications that the mathematical constitution of the physical has for the question of the unreasonable effectiveness of the use of mathematics in physics
    corecore