443 research outputs found

    Microsurgical Technique of Simultaneous Pancreas/Kidney Transplantation in the Rat: Clinical Experience and Review of the Literature

    Get PDF
    Background: For experimental basic research, standardized transplantation models reflecting technical and immunologic aspects are necessary. This article describes an experimental model of combined pancreas/kidney transplantation (PKTx) in detail. Materials and Methods: Donor rats underwent en bloc pancreatectomy and nephrectomy. Revascularization was performed using the aorta with the superior mesenteric artery and the inferior vena cava with the portal vein. Exocrine drainage of the pancreas took place over a segment of the duodenum which was transplanted side-to-side to the jejunum. The kidney vessels were transplanted end-to-side. The ureter was anastomosed by patch technique. Postoperatively, serum parameters were monitored daily. Biopsies for histopathology were taken on days 5, 8 and 12. Results: All 12 recipients survived the combined PKTx without serious surgical complications. One thrombosis of the portal vein led to organ failure. Blood glucose levels were normal by the 3rd postoperative day. The transplanted duodenal segment showed slight villous atrophy, and the kidneys were well perfused without vascular complications. The anastomosis between ureter and bladder was leakproof. Conclusions: Excellent graft function and survival rates can be achieved due to simplified operation technique and short operation time. It may thus have high clinical relevance to immunologic issues within the scope of basic research. Copyright (C) 2009 S. Karger AG, Base

    The value-added of primary schools: what is it really measuring?

    Get PDF
    This paper compares the official value-added scores in 2005 for all primary schools in three adjacent LEAs in England with the raw-score Key Stage 2 results for the same schools. The correlation coefficient for the raw- and value-added scores of these 457 schools is around +0.75. Scatterplots show that there are no low attaining schools with average or higher value-added, and no high attaining schools with below average value-added. At least some of the remaining scatter is explained by the small size of some schools. Although some relationship between these measures is to be expected – so that schools adding considerable value would tend to have high examination outcome scores – the relationship shown is too strong for this explanation to be considered sufficient. Value-added analysis is intended to remove the link between a schools’ intake scores and their raw-score outcomes at KS2. It should lead to an estimate of the differential progress made by pupils, assessed between schools. In fact, however, the relationship between value-added and raw scores is of the same size as the original relationship between intake scores and raw-scores that the value-added is intended to overcome. Therefore, however appealing the calculation of value-added figures is, their development is still at the stage where they are not ready to move from being a research tool to an instrument of judgement on schools. Such figures may mislead parents, governors and teachers and, even more importantly, they are being used in England by OFSTED to pre-determine the results of school inspections

    On the Maximum Crossing Number

    Full text link
    Research about crossings is typically about minimization. In this paper, we consider \emph{maximizing} the number of crossings over all possible ways to draw a given graph in the plane. Alpert et al. [Electron. J. Combin., 2009] conjectured that any graph has a \emph{convex} straight-line drawing, e.g., a drawing with vertices in convex position, that maximizes the number of edge crossings. We disprove this conjecture by constructing a planar graph on twelve vertices that allows a non-convex drawing with more crossings than any convex one. Bald et al. [Proc. COCOON, 2016] showed that it is NP-hard to compute the maximum number of crossings of a geometric graph and that the weighted geometric case is NP-hard to approximate. We strengthen these results by showing hardness of approximation even for the unweighted geometric case and prove that the unweighted topological case is NP-hard.Comment: 16 pages, 5 figure

    The Lantern Vol. 33, No. 2, May 1967

    Get PDF
    • The Plea • Arrival • Nouvelle • Poem on Theme by Leroi Jones • Night Thoughts • Finals • Caught in the Act • Tomorrow • The Rail • The Price • Lost • It\u27s a Svaden Spring • No Thanks to City Hall • Grinding Them to Dust • Four • Five • Nine • Ten • Twelve • Thirty-Six • Psyched Up and Out • Gutted Gloryhttps://digitalcommons.ursinus.edu/lantern/1091/thumbnail.jp

    Decomposition of halogenated nucleobases by surface plasmon resonance excitation of gold nanoparticles

    Get PDF
    Halogenated uracil derivatives are of great interest in modern cancer therapy, either as chemotherapeutics or radiosensitisers depending on their halogen atom. This work applies UV-Vis spectroscopy to study the radiation damage of uracil, 5-bromouracil and 5-fluorouracil dissolved in water in the presence of gold nanoparticles upon irradiation with an Nd:YAG ns-pulsed laser operating at 532 nm at different fluences. Gold nanoparticles absorb light efficiently by their surface plasmon resonance and can significantly damage DNA in their vicinity by an increase of temperature and the generation of reactive secondary species, notably radical fragments and low energy electrons. A recent study using the same experimental approach characterized the efficient laser-induced decomposition of the pyrimidine ring structure of 5-bromouracil mediated by the surface plasmon resonance of gold nanoparticles. The present results show that the presence of irradiated gold nanoparticles decomposes the ring structure of uracil and its halogenated derivatives with similar efficiency. In addition to the fragmentation of the pyrimidine ring, for 5-bromouracil the cleavage of the carbon-halogen bond could be observed, whereas for 5-fluorouracil this reaction channel was inhibited. Locally-released halogen atoms can react with molecular groups within DNA, hence this result indicates a specific mechanism by which doping with 5-bromouracil can enhance DNA damage in the proximity of laser irradiated gold nanoparticles. Graphical abstract

    Kinetics of molecular decomposition under irradiation of gold nanoparticles with nanosecond laser pulses—A 5-Bromouracil case study

    Get PDF
    Laser illuminated gold nanoparticles (AuNPs) efficiently absorb light and heat up the surrounding medium, leading to versatile applications ranging from plasmonic catalysis to cancer photothermal therapy. Therefore, an in-depth understanding of the thermal, optical, and electron induced reaction pathways is required. Here, the electrophilic DNA nucleobase analog 5-Bromouracil (BrU) has been used as a model compound to study its decomposition in the vicinity of AuNPs illuminated with intense ns laser pulses under various conditions. The plasmonic response of the AuNPs and the concentration of BrU and resulting photoproducts have been tracked by ultraviolet and visible (UV–Vis) spectroscopy as a function of the irradiation time. A kinetic model has been developed to determine the reaction rates of two parallel fragmentation pathways of BrU, and their dependency on laser fluence and adsorption on the AuNP have been evaluated. In addition, the size and the electric field enhancement of the decomposed AuNPs have been determined by atomic force microscopy and finite domain time difference calculations, respectively. A minor influence of the direct photoreaction and a strong effect of the heating of the AuNPs have been revealed. However, due to the size reduction of the irradiated AuNPs, a trade-off between laser fluence and plasmonic response of the AuNPs has been observed. Hence, the decomposition of the AuNPs might be limiting the achievable temperatures under irradiation with several laser pulses. These findings need to be considered for an efficient design of catalytic plasmonic systems

    Microtubule-based perception of mechanical conflicts controls plant organ morphogenesis.

    Get PDF
    Precise coordination between cells and tissues is essential for differential growth in plants. During lateral root formation in Arabidopsis thaliana, the endodermis is actively remodeled to allow outgrowth of the new organ. Here, we show that microtubule arrays facing lateral root founder cells display a higher order compared to arrays on the opposite side of the same cell, and this asymmetry is required for endodermal remodeling and lateral root initiation. We identify that MICROTUBULE ASSOCIATED PROTEIN 70-5 (MAP70-5) is necessary for the establishment of this spatially defined microtubule organization and endodermis remodeling and thus contributes to lateral root morphogenesis. We propose that MAP70-5 and cortical microtubule arrays in the endodermis integrate the mechanical signals generated by lateral root outgrowth, facilitating the channeling of organogenesis

    Probing the Interaction of the Diarylquinoline TMC207 with Its Target Mycobacterial ATP Synthase

    Get PDF
    Infections with Mycobacterium tuberculosis are substantially increasing on a worldwide scale and new antibiotics are urgently needed to combat concomitantly emerging drug-resistant mycobacterial strains. The diarylquinoline TMC207 is a highly promising drug candidate for treatment of tuberculosis. This compound kills M. tuberculosis by binding to a new target, mycobacterial ATP synthase. In this study we used biochemical assays and binding studies to characterize the interaction between TMC207 and ATP synthase. We show that TMC207 acts independent of the proton motive force and does not compete with protons for a common binding site. The drug is active on mycobacterial ATP synthesis at neutral and acidic pH with no significant change in affinity between pH 5.25 and pH 7.5, indicating that the protonated form of TMC207 is the active drug entity. The interaction of TMC207 with ATP synthase can be explained by a one-site binding mechanism, the drug molecule thus binds to a defined binding site on ATP synthase. TMC207 affinity for its target decreases with increasing ionic strength, suggesting that electrostatic forces play a significant role in drug binding. Our results are consistent with previous docking studies and provide experimental support for a predicted function of TMC207 in mimicking key residues in the proton transfer chain and blocking rotary movement of subunit c during catalysis. Furthermore, the high affinity of TMC207 at low proton motive force and low pH values may in part explain the exceptional ability of this compound to efficiently kill mycobacteria in different microenvironments

    The Effects of Cocaine on Different Redox Forms of Cysteine and Homocysteine, and on Labile, Reduced Sulfur in the Rat Plasma Following Active versus Passive Drug Injections

    Get PDF
    Received: 28 November 2012 / Revised: 19 April 2013 / Accepted: 6 May 2013 / Published online: 16 May 2013 The Author(s) 2013. This article is published with open access at Springerlink.comThe aim of the present studies was to evaluate cocaine-induced changes in the concentrations of different redox forms of cysteine (Cys) and homocysteine (Hcy), and products of anaerobic Cys metabolism, i.e., labile, reduced sulfur (LS) in the rat plasma. The above-mentioned parameters were determined after i.p. acute and subchronic cocaine treatment as well as following i.v. cocaine self-administration using the yoked procedure. Additionally, Cys, Hcy, and LS levels were measured during the 10-day extinction training in rats that underwent i.v. cocaine administration. Acute i.p. cocaine treatment increased the total and protein-bound Hcy contents, decreased LS, and did not change the concentrations of Cys fractions in the rat plasma. In turn, subchronic i.p. cocaine administration significantly increased free Hcy and lowered the total and protein-bound Cys concentrations while LS level was unchanged. Cocaine self-administration enhanced the total and protein-bound Hcy levels, decreased LS content, and did not affect the Cys fractions. On the other hand, yoked cocaine infusions did not alter the concentration of Hcy fractions while decreased the total and protein-bound Cys and LS content. This extinction training resulted in the lack of changes in the examined parameters in rats with a history of cocaine self-administration while in the yoked cocaine group an increase in the plasma free Cys fraction and LS was seen. Our results demonstrate for the first time that cocaine does evoke significant changes in homeostasis of thiol amino acids Cys and Hcy, and in some products of anaerobic Cys metabolism, which are dependent on the way of cocaine administration
    corecore