141 research outputs found

    Effect of iloprost on contractile impairment and mitochondrial degeneration in ischemia-reperfusion of skeletal muscle

    Get PDF
    Purpose Acute lower extremity ischemia is still a main cause of mortality and morbidity in orthopedic traumatology and reconstructive surgery. In acute lower extremity ischemia, the skeletal muscles are the tissues that are the most vulnerable to ischemia. The aim of this study was to evaluate the effects of iloprost (IL) therapy on skeletal muscle contractile impairment and mitochondrial degeneration in an acute lower extremity ischemia-reperfusion rat model. Main Methods Forty Wistar albino rats were randomly divided into a control group and four experimental groups. Experimental groups were either subjected to 2 h of lower extremity ischemia followed by a 4-h reperfusion period or to 4 h of ischemia followed by an 8-h reperfusion period. Except for the animals in the control group, all animals received IL (1 ng/kg/min) or saline (1 ml/kg) by intraperitoneal infusion for 10 min immediately before reperfusion. At the end of the recording of skeletal muscle electrical activity and contractility, all rats were sacrificed by decapitation and muscle samples of lower extremity were immediately harvested for histopathologic analyses. Results After ischemia-reperfusion, a breakdown in the force–frequency curves of extensor digitorum longus muscle was observed, showing the diminished muscle contractility. However, IL significantly improved muscle contractility following injury induced by 2 h of ischemia followed by a 4-h reperfusion period. In addition, IL partially ameliorated mitochondrial degeneration in the muscle cells of ischemia groups. Conclusion This study indicates that immediate IL therapy repairs muscle damage especially after 2 h of ischemia and 4 h of reperfusion and therefore that IL improves contractile function

    Clinical Symptoms in Fibromyalgia Are Better Associated to Lipid Peroxidation Levels in Blood Mononuclear Cells Rather than in Plasma

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License.[Background] We examined lipid peroxidation (LPO) in blood mononuclear cells (BMCs) and plasma, as a marker of oxidative damage, and its association to clinical symptoms in Fibromyalgia (FM) patients. [Methods]: We conducted a case–control and correlational study comparing 65 patients and 45 healthy controls. Clinical parameters were evaluated using the Fibromyalgia Impact Questionnaire (FIQ), visual analogues scales (VAS), and the Beck Depression Inventory (BDI). Oxidative stress was determined by measuring LPO in BMCs and plasma. [Results]: We found increased LPO levels in BMCs and plasma from FM patients as compared to normal control (P<0.001). A significant correlation between LPO in BMCs and clinical parameters was observed (r = 0.584, P<0.001 for VAS; r = 0.823, P<0.001 for FIQ total score; and r = 0.875, P<0.01 for depression in the BDI). We also found a positive correlation between LPO in plasma and clinical symptoms (r = 0.452, P<0.001 for VAS; r = 0.578, P<0.001 for FIQ total score; and r = 0.579, P<0.001 for depression in the BDI). Partial correlation analysis controlling for age and BMI, and sex, showed that both LPO in cells and plasma were independently associated to clinical symptoms. However, LPO in cells, but not LPO in plasma, was independently associated to clinical symptoms when controlling for depression (BDI scores). [Discussion]: The results of this study suggest a role for oxidative stress in the pathophysiology of fibromyalgia and that LPO in BMCs rather than LPO in plasma is better associated to clinical symptoms in FM.This work was supported by Spanish FIS PI080500 grant, and FIS EC08/00076 grant, Ministerio de Sanidad, Spain, and Federación Andaluza de Fibromialgia y Fatiga Crónica (ALBA Andalucía). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewe

    Managing hyperemesis gravidarum: a multimodal challenge

    Get PDF
    Up to 90% of pregnant women experience nausea and vomiting. When prolonged or severe, this is known as hyperemesis gravidarum (HG), which can, in individual cases, be life threatening. In this article the aetiology, diagnosis and treatment strategies will be presented based on a selective literature review. Treatment strategies range from outpatient dietary advice and antiemetic drugs to hospitalization and intravenous (IV) fluid replacement in persistent or severe cases. Alternative methods, such as acupuncture, are not yet evidence based but sometimes have a therapeutic effect

    Evaluation of bond strength of silorane and methacrylate based restorative systems to dentin using different cavity models

    Get PDF
    OBJECTIVE: The aim of this in vitro study was to evaluate the microtensile bond strength (µTBS) to dentin of two different restorative systems: silorane-based (P90), and methacrylate-based (P60), using two cavity models. MATERIAL AND METHODS: Occlusal enamel of 40 human third molars was removed to expose flat dentin surface. Class I cavities with 4 mm mesial-distal width, 3 mm buccal-lingual width and 3 mm depth (C-factor=4.5) were prepared in 20 teeth, which were divided into two groups (n=10) restored with P60 and P90, bulk-filled after dentin treatment according to manufacturer's instructions. Flat buccal dentin surfaces were prepared in the 20 remaining teeth (C-factor=0.2) and restored with resin blocks measuring 4x3x3 mm using the two restorative systems (n=10). The teeth were sectioned into samples with area between 0.85 and 1.25 mm(2) that were submitted to µTBS testing, using a universal testing machine (EMIC) at speed of 0.5 mm/min. Fractured specimens were analyzed under stereomicroscope and categorized according to fracture pattern. Data were analyzed using ANOVA and Tukey Kramer tests. RESULTS: For flat surfaces, P60 obtained higher bond strength values compared with P90. However, for Class I cavities, P60 showed significant reduction in bond strength (p<0.05). No statistical difference between restorative systems was shown for Class I cavity model (p>0.05), or between Class I Cavity and Flat Surface group, considering P90 restorative system (p>0.05). Regarding fracture pattern, there was no statistical difference among groups (p=0.0713) and 56.3% of the fractures were adhesive. CONCLUSION: It was concluded that methacrylate-based composite µTBS was influenced by cavity models, and the use of silorane-based composite led to similar bond strength values compared to the methacrylate-based composite in cavities with high C-factor
    corecore