7 research outputs found

    A delay equation model for oviposition habitat selection by mosquitoes

    Full text link
    We propose a patch type model for mosquitoes that have aquatic larvae inhabiting ponds. Partial differential equations (PDEs) model the larvae on each of several disconnected patches representing the ponds, with conditions varying in each patch, coupled via the adults in the air. From the PDEs a scalar delay differential equation, with multiple delays, for the total adult mosquito population is derived. The various delays represent the larval development times in the patches. The coefficients contain all the relevant information about the sizes and geometry of the individual patches inhabited by the larvae, the boundary conditions applicable to those patches and the diffusivity of the larvae in each patch. For patches of general shapes and sizes, and without the need to specify the criteria by which an adult mosquito selects an oviposition patch, the modern theory of monotone dynamical systems and persistence theory enables a complete determination of the conditions for the mosquito population to go extinct or to persist. More detailed biological insights are obtained for the case when the patches are squares of various sizes, which allows a detailed discussion of the effects of scale, and for two particular criteria by which mosquitoes might select patches for oviposition, being (i) selection based solely on patch area, and (ii) selection based both on area and expected larval survival probability for each patch. In some parameter regimes, counterintuitive phenomena are predicted

    Changing Domesticity of Aedes aegypti in Northern Peninsular Malaysia: Reproductive Consequences and Potential Epidemiological Implications

    Get PDF
    BACKGROUND: The domestic dengue vector Aedes aegypti mosquitoes breed in indoor containers. However, in northern peninsular Malaysia, they show equal preference for breeding in both indoor and outdoor habitats. To evaluate the epidemiological implications of this peridomestic adaptation, we examined whether Ae. aegypti exhibits decreased survival, gonotrophic activity, and fecundity due to lack of host availability and the changing breeding behavior. METHODOLOGY/PRINCIPAL FINDINGS: This yearlong field surveillance identified Ae. aegypti breeding in outdoor containers on an enormous scale. Through a sequence of experiments incorporating outdoors and indoors adapting as well as adapted populations, we observed that indoors provided better environment for the survival of Ae. aegypti and the observed death patterns could be explained on the basis of a difference in body size. The duration of gonotrophic period was much shorter in large-bodied females. Fecundity tended to be greater in indoor acclimated females. We also found increased tendency to multiple feeding in outdoors adapted females, which were smaller in size compared to their outdoors breeding counterparts. CONCLUSION/SIGNIFICANCE: The data presented here suggest that acclimatization of Ae. aegypti to the outdoor environment may not decrease its lifespan or gonotrophic activity but rather increase breeding opportunities (increased number of discarded containers outdoors), the rate of larval development, but small body sizes at emergence. Size is likely to be correlated with disease transmission. In general, small size in Aedes females will favor increased blood-feeding frequency resulting in higher population sizes and disease occurrence

    Exploring the potential of computer vision analysis of pupae size dimorphism for adaptive sex sorting systems of various vector mosquito species

    Get PDF
    International audienceBackgroundSeveral mosquito population suppression strategies based on the rearing and release of sterile males have provided promising results. However, the lack of an efficient male selection method has hampered the expansion of these approaches into large-scale operational programmes. Currently, most of these programmes targeting Aedes mosquitoes rely on sorting methods based on the sexual size dimorphism (SSD) at the pupal stage. The currently available sorting methods have not been developed based on biometric analysis, and there is therefore potential for improvement. We applied an automated pupal size estimator developed by Grupo Tragsa with laboratory samples of Anopheles arabiensis, Aedes albopictus, Ae. polynesiensis, and three strains of Ae. aegypti. The frequency distribution of the pupal size was analyzed. We propose a general model for the analysis of the frequency distribution of mosquito pupae in the context of SSD-sorting methods, which is based on a Gaussian mixture distribution functions, thus making possible the analysis of performance (% males recovery) and purity (% males on the sorted sample).ResultsFor the three Aedes species, the distribution of the pupae size can be modeled by a mixture of two Gaussian distribution functions and the proposed model fitted the experimental data. For a given population, each size threshold is linked to a specific outcome of male recovery. Two dimensionless parameters that measure the suitability for SSD-based sorting of a specific batch of pupae are provided. The optimal sorting results are predicted for the highest values of SSD and lowest values of intra-batch variance. Rearing conditions have a strong influence in the performance of the SSD-sorting methods and non-standard rearing can lead to increase pupae size heterogeneity.ConclusionsSex sorting of pupae based on size dimorphism can be achieved with a high performance (% males recovery) and a reasonably high purity (% males on the sorted sample) for the different Aedes species and strains. The purity and performance of a sex sorting operation in the tested Aedes species are linked parameters whose relation can be modeled. The conclusions of this analysis are applicable to all the existing SSD-sorting methods. The efficiency of the SSD-sorting methods can be improved by reducing the heterogeneity of pupae size within rearing containers. The heterogeneity between batches does not strongly affect the quality of the sex sorting, as long as a specific separation threshold is not pre-set before the sorting process. For new developments, we recommend using adaptive and precise threshold selection methods applied individually to each batch or to a mix of batches. Adaptive and precise thresholds will allow the sex-sorting of mixed batches in operational conditions maintaining the target purity at the cost of a reduction in performance. We also recommend a strategy whereby an acceptable level of purity is pre-selected and remains constant across the different batches of pupae while the performance varies from batch to batch to fit with the desired purity
    corecore