2,259 research outputs found

    Efficiency in Multi-objective Games

    Full text link
    In a multi-objective game, each agent individually evaluates each overall action-profile on multiple objectives. I generalize the price of anarchy to multi-objective games and provide a polynomial-time algorithm to assess it. This work asserts that policies on tobacco promote a higher economic efficiency

    Experimental and numerical study on soot formation in laminar diffusion flames of biodiesels and methyl esters

    Get PDF
    Biodiesel and blends with petroleum diesel are promising renewable alternative fuels for engines. In the present study, the soot concentration generated from four biodiesels, two pure methyl esters, and their blends with petroleum diesel are measured in a series of fully pre-vapourised co-flow diffusion flames. The experimental measurements are conducted using planar laser induced-incandescence (LII) and laser extinction optical methods. The results show that the maximum local soot volume fractions of neat biodiesels are 24.4% - 41.2% of pure diesel, whereas the mean soot volume fraction of neat biodiesel cases was measured as 11.3% - 21.3% of pure diesel. The addition of biodiesel to diesel not only reduces the number of inception particles, but also inhibits their surface growth. The discretised population balance modelling of a complete set of soot processes is employed to compute the 2D soot volume fraction and size distribution across the tested flames. The results show that the model also demonstrates a reduction of both soot volume fraction and primary particle size by adding biodiesel fuels. However, it is not possible to clearly determine which factors are responsible for the reduction from the comparison alone. Moreover, analysis of the discrepancies between numerical and experimental results for diesel and low-blending cases offers an insight for the refinement of soot formation modelling of combustion with large-molecule fuels.Bo Tian is supported by the fellowship provided by ZEPI. C. T. Chong is supported by the Newton Advanced Fellowship of the Royal Society (NA160115). Anxiong Liu gratefully acknowledges the financial support of the Chinese Scholarship Council (CSC) and the EPSRC grant No. EP/S012559/1

    TPXL-1 activates Aurora A to clear contractile ring components from the polar cortex during cytokinesis

    Get PDF
    During cytokinesis, a signal from the central spindle that forms between the separating anaphase chromosomes promotes the accumulation of contractile ring components at the cell equator, while a signal from the centrosomal microtubule asters inhibits accumulation of contractile ring components at the cell poles. However, the molecular identity of the inhibitory signal has remained unknown. To identify molecular components of the aster-based inhibitory signal, we developed a means to monitor the removal of contractile ring proteins from the polar cortex after anaphase onset. Using this assay, we show that polar clearing is an active process that requires activation of Aurora A kinase by TPXL-1. TPXL-1 concentrates on astral microtubules coincident with polar clearing in anaphase, and its ability to recruit Aurora A and activate its kinase activity are essential for clearing. In summary, our data identify Aurora A kinase as an aster-based inhibitory signal that restricts contractile ring components to the cell equator during cytokinesis.We thank the Caenorhabditis Genetic Center (funded by the National Institutes of Health Office of Research Infrastructure Programs P40 OD010440) for strains. This work was supported by grants to K. Oegema (National Institutes of Health; GM074207), E. Zanin (Deutsche Forschungsgemeinschaft, ZA619/3-1), and A.X. Carvalho (European Research Council; 640553–ACTOMYO). T. Kim was supported by a grant to Arshad Desai (National Institutes of Health; GM074215). K. Oegema receives salary and other support from the Ludwig Institute for Cancer Research. S. Mangal is a member of International Max Planck Research School for Molecular Life Sciences, and J. Sacher is a member of the Life Science Munich graduate program; both thank their programs for support

    Predicting clinical outcomes in Glioblastoma: an application of topological and functional data analysis

    Get PDF
    Glioblastoma multiforme (GBM) is an aggressive form of human brain cancer that is under active study in the field of cancer biology. Its rapid progression and the relative time cost of obtaining molecular data make other readily available forms of data, such as images, an important resource for actionable measures in patients. Our goal is to use information given by medical images taken from GBM patients in statistical settings. To do this, we design a novel statistic—the smooth Euler characteristic transform (SECT)—that quantifies magnetic resonance images of tumors. Due to its well-defined inner product structure, the SECT can be used in a wider range of functional and nonparametric modeling approaches than other previously proposed topological summary statistics. When applied to a cohort of GBM patients, we find that the SECT is a better predictor of clinical outcomes than both existing tumor shape quantifications and common molecular assays. Specifically, we demonstrate that SECT features alone explain more of the variance in GBM patient survival than gene expression, volumetric features, and morphometric features. The main takeaways from our findings are thus 2-fold. First, they suggest that images contain valuable information that can play an important role in clinical prognosis and other medical decisions. Second, they show that the SECT is a viable tool for the broader study of medical imaging informatics. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement

    Trapped lipopolysaccharide and LptD intermediates reveal lipopolysaccharide translocation steps across the Escherichia coli outer membrane

    Get PDF
    Lipopolysaccharide (LPS) is a main component of the outer membrane of Gram-negative bacteria, which is essential for the vitality of most Gram-negative bacteria and plays a critical role for drug resistance. LptD/E complex forms a N-terminal LPS transport slide, a hydrophobic intramembrane hole and the hydrophilic channel of the barrel, for LPS transport, lipid A insertion and core oligosaccharide and O-antigen polysaccharide translocation, respectively. However, there is no direct evidence to confirm that LptD/E transports LPS from the periplasm to the external leaflet of the outer membrane. By replacing LptD residues with an unnatural amino acid p-benzoyl-L-phenyalanine (pBPA) and UV-photo-cross-linking in E.coli, the translocon and LPS intermediates were obtained at the N-terminal domain, the intramembrane hole, the lumenal gate, the lumen of LptD channel, and the extracellular loop 1 and 4, providing the first direct evidence and “snapshots” to reveal LPS translocation steps across the outer membrane

    Transcription inactivation through local refolding of the RNA polymerase structure

    Get PDF
    Structural studies of antibiotics not only provide a shortcut to medicine allowing for rational structure-based drug design, but may also capture snapshots of dynamic intermediates that become 'frozen' after inhibitor binding. Myxopyronin inhibits bacterial RNA polymerase (RNAP) by an unknown mechanism. Here we report the structure of dMyx--a desmethyl derivative of myxopyronin B--complexed with a Thermus thermophilus RNAP holoenzyme. The antibiotic binds to a pocket deep inside the RNAP clamp head domain, which interacts with the DNA template in the transcription bubble. Notably, binding of dMyx stabilizes refolding of the beta'-subunit switch-2 segment, resulting in a configuration that might indirectly compromise binding to, or directly clash with, the melted template DNA strand. Consistently, footprinting data show that the antibiotic binding does not prevent nucleation of the promoter DNA melting but instead blocks its propagation towards the active site. Myxopyronins are thus, to our knowledge, a first structurally characterized class of antibiotics that target formation of the pre-catalytic transcription initiation complex-the decisive step in gene expression control. Notably, mutations designed in switch-2 mimic the dMyx effects on promoter complexes in the absence of antibiotic. Overall, our results indicate a plausible mechanism of the dMyx action and a stepwise pathway of open complex formation in which core enzyme mediates the final stage of DNA melting near the transcription start site, and that switch-2 might act as a molecular checkpoint for DNA loading in response to regulatory signals or antibiotics. The universally conserved switch-2 may have the same role in all multisubunit RNAPs

    Predictions from Lattice QCD

    Get PDF
    In the past year, we calculated with lattice QCD three quantities that were unknown or poorly known. They are the q2q^2 dependence of the form factor in semileptonic DKlνD\to Kl\nu decay, the decay constant of the DD meson, and the mass of the BcB_c meson. In this talk, we summarize these calculations, with emphasis on their (subsequent) confirmation by experiments.Comment: v1: talk given at the International Conference on QCD and Hadronic Physics, Beijing, June 16-20, 2005; v2: poster presented at the XXIIIrd International Symposium on Lattice Field Theory, Dublin, July 25-3

    Conjoint bicondylar Hoffa fracture in a child: a rare variant treated by minimally invasive approach

    Get PDF
    A case of conjoint Hoffa-type fracture in a child is presented. Hoffa fracture, i.e., coronal slice fracture of the condyles of the femur, is rare in adults and even rarer in the pediatric population. To date, no case of conjoint bicondylar Hoffa fracture has been reported in the literature. The presented case was successfully treated by arthroscopically assisted internal fixation
    corecore