631 research outputs found

    A Toy Model Approach to the Canonical Non-perturbative Quantization of the Spatially Flat Robertson-Walker Spacetimes with Cosmological Constant

    Get PDF
    We present a toy model approach to the canonical non-perturbative quantization of the spatially-flat Robertson-Walker Universes with cosmological constant, based on the fact that such models are exactly solvable within the framework of a simple Lagrangian formulation. The essential quantum dynamical metric-field and the corresponding Hamiltonian, explicitly derived in terms of annihilation and creation operators, point out that the Wheeler - DeWitt equation is a natural (quantum) generalization of the G44G_{44} - Einstein equation for the classical De Sitter spacetime and selects the physical states of the quantum De Sitter Universe. As a result of the exponential universal expansion, the usual Fock states (defined as the eigenstates of the number-operator) are no longer invariant under the derived Hamiltonian. They exhibit quantum fluctuation of the energy and of the metric field which lead to a (geometrical) volume quantization.Comment: 22 pages, LaTe

    Determinants of the adoption of integrated soil fertility management technologies in Mbale division, Kenya

    Get PDF
    The agro-climatic conditions in western Kenya present the region as a food surplus area yet people are still reliant on food imports, with the region registering high poverty levels. Depletion of soil fertility and the resulting decline in agricultural productivity in Mbale division has led to many attempts to develop and popularize Integrated Soil Fertility Management (ISFM) technologies that could restore soil fertility. These technologies bridge the gap between high external inputs and extreme forms of traditional low external input agriculture. Some of the ISFM components used by farmers are organic and inorganic inputs and improved seeds. However, the adoption of these technologies is low. The study aimed to examine the factors that influence the adoption of ISFM technologies by smallholder farmers in Mbale division, Kenya. The study was conducted in 9 sub-locations in Mbale division. Purposive sampling was used in selecting the 80 farmers to get the data based on a farm-household survey. Self-administered questionnaires were used to collect data on the determinants of the adoption of ISFM technologies from the sampled farmers in the study area. The study sought to answer the research question: What factors influence the uptake of ISFM technologies by farmers in Mbale division? The hypothesis tested was that the adoption of ISFM technologies is not influenced by age, education, extension services, labour, off-farm income and farm size. Data was analyzed using descriptive statistics. Cross tabulation was used for examining the relationship between categorical (nominal or ordinal) variables, and the bivariate correlations procedure was used to compute the pair wise associations between scale or ordinal variables. Probit regression was used to predict the socio-economic factors influencing the adoption of ISFM technologies among smallholder farmers. Results of the study indicated that education of household head, membership in social groups, age of the household head, off-farm income and farm size were the variables that significantly influenced the adoption of ISFM technologies. The findings show that there is need for a more pro-poor focused approach to achieve sustainable soil fertility management among smallholder farmers. The findings will help farmers, extension officers, researchers and donors in identifying region-specific entry points that can help in developing innovative ISFM technologies.Keywords: Soil fertility, adoption, smallholder farmer, integrated soil fertility managemen

    The only constant is change:a case study of business model change in the context of COVID-19 pandemic

    Get PDF
    Abstract. The spread of the COVID-19 pandemic has led to major changes across different sectors of the economy. The difficult situation of the business environments in various industries caused by the COVID-19 virus made companies struggle, some more than others. Profitable functioning in the market has therefore become more difficult. What is interesting, some companies survived, or even succeeded, during restrictions and managed to understand and operate with the changed customer behavior during and after worst phases of the world-wide pandemic. The aim of this research study is to find out if there are dynamic capabilities as business model change enablers by understanding the activities in the design and trans-forming new, successful business model and to explain, how it was possible for these case companies to change the existing business model. The underlying assumption is, that companies which have changed their existing business model to a new one due to COVID-19 pandemic and its effect to their market environment, have had certain dynamic capabilities and a process in a form of actions in place to succeed. This research study presents empirical findings to support theories of dynamic capabilities as enablers for business model change. One of the concrete goals of this research is to provide insights and learnings about what do the capabilities of successful companies look like, and how do they act, when they sense the change in their company’s business environment, mobilize their resources to act on those findings and finally execute and implement the change. The empirical findings show, that dynamic capabilities work as enablers for business model innovation and business model transformation. Thus, findings support the importance of knowing and understanding your customers’ behavior and needs, as well as the knowledge of the resource potential in and outside of the company, in order to design viable business models and implement them. Learnings gained from this research are valuable and interesting for strategists and leaders in companies when trying to improve their readiness for future environment changes. In addition, organizations, who are helping companies either to 1) grow their business or 2) survive from difficulties caused by rapid market environment change, can adopt learnings from this research study. The methods of this research study are qualitative. In this research study, a case study method was applied and the data was collected by in-depth semi-structured interviews, complemented with questions and answers via email and by collecting articles and other media content in public sources

    Quantitative Analysis of DoS Attacks and Client Puzzles in IoT Systems

    Full text link
    Denial of Service (DoS) attacks constitute a major security threat to today's Internet. This challenge is especially pertinent to the Internet of Things (IoT) as devices have less computing power, memory and security mechanisms to mitigate DoS attacks. This paper presents a model that mimics the unique characteristics of a network of IoT devices, including components of the system implementing `Crypto Puzzles' - a DoS mitigation technique. We created an imitation of a DoS attack on the system, and conducted a quantitative analysis to simulate the impact such an attack may potentially exert upon the system, assessing the trade off between security and throughput in the IoT system. We model this through stochastic model checking in PRISM and provide evidence that supports this as a valuable method to compare the efficiency of different implementations of IoT systems, exemplified by a case study

    Key exchange with the help of a public ledger

    Full text link
    Blockchains and other public ledger structures promise a new way to create globally consistent event logs and other records. We make use of this consistency property to detect and prevent man-in-the-middle attacks in a key exchange such as Diffie-Hellman or ECDH. Essentially, the MitM attack creates an inconsistency in the world views of the two honest parties, and they can detect it with the help of the ledger. Thus, there is no need for prior knowledge or trusted third parties apart from the distributed ledger. To prevent impersonation attacks, we require user interaction. It appears that, in some applications, the required user interaction is reduced in comparison to other user-assisted key-exchange protocols

    DETERMINANTS OF THE ADOPTION OF INTEGRATED SOIL FERTILITY MANAGEMENT TECHNOLOGIES IN MBALE DIVISION, KENYA

    Get PDF
    ABSTRACT The agro-climatic conditions in western Kenya present the region as a food surplus area yet people are still reliant on food imports, with the region registering high poverty levels. Depletion of soil fertility and the resulting decline in agricultural productivity in Mbale division has led to many attempts to develop and popularize Integrated Soil Fertility Management (ISFM) technologies that could restore soil fertility. These technologies bridge the gap between high external inputs and extreme forms of traditional low external input agriculture. Some of the ISFM components used by farmers are organic and inorganic inputs and improved seeds. However, the adoption of these technologies is low. The study aimed to examine the factors that influence the adoption of ISFM technologies by smallholder farmers in Mbale division, Kenya. The study was conducted in 9 sublocations in Mbale division. Purposive sampling was used in selecting the 80 farmers to get the data based on a farm-household survey. Self-administered questionnaires were used to collect data on the determinants of the adoption of ISFM technologies from the sampled farmers in the study area. The study sought to answer the research question: What factors influence the uptake of ISFM technologies by farmers in Mbale division? The hypothesis tested was that the adoption of ISFM technologies is not influenced by age, education, extension services, labour, off-farm income and farm size. Data was analyzed using descriptive statistics. Cross tabulation was used for examining the relationship between categorical (nominal or ordinal) variables, and the bivariate correlations procedure was used to compute the pair wise associations between scale or ordinal variables. Probit regression was used to predict the socio-economic factors influencing the adoption of ISFM technologies among smallholder farmers. Results of the study indicated that education of household head, membership in social groups, age of the household head, off-farm income and farm size were the variables that significantly influenced the adoption of ISFM technologies. The findings show that there is need for a more pro-poor focused approach to achieve sustainable soil fertility management among smallholder farmers. The findings will help farmers, extension officers, researchers and donors in identifying region-specific entry points that can help in developing innovative ISFM technologies

    Ilmastonmuutoksen vaikutus pienten varpuslintujen pesyekokoon

    Get PDF

    NIHAO project II: Halo shape, phase-space density and velocity distribution of dark matter in galaxy formation simulations

    Get PDF
    We use the NIHAO (Numerical Investigation of Hundred Astrophysical Objects) cosmological simulations to study the effects of galaxy formation on key properties of dark matter (DM) haloes. NIHAO consists of 90\simeq 90 high-resolution SPH simulations that include (metal-line) cooling, star formation, and feedback from massive stars and SuperNovae, and cover a wide stellar and halo mass range: 106<M/M<101110^6 < M_* / M_{\odot} < 10^{11} ( 109.5<Mhalo/M<1012.510^{9.5} < M_{\rm halo} / M_{\odot} < 10^{12.5}). When compared to DM-only simulations, the NIHAO haloes have similar shapes at the virial radius, R_{\rm vir}, but are substantially rounder inside 0.1Rvir\simeq 0.1R_{\rm vir}. In NIHAO simulations c/ac/a increases with halo mass and integrated star formation efficiency, reaching 0.8\sim 0.8 at the Milky Way mass (compared to 0.5 in DM-only), providing a plausible solution to the long-standing conflict between observations and DM-only simulations. The radial profile of the phase-space QQ parameter (ρ/σ3\rho/\sigma^3) is best fit with a single power law in DM-only simulations, but shows a flattening within 0.1Rvir\simeq 0.1R_{\rm vir} for NIHAO for total masses M>1011MM>10^{11} M_{\odot}. Finally, the global velocity distribution of DM is similar in both DM-only and NIHAO simulations, but in the solar neighborhood, NIHAO galaxies deviate substantially from Maxwellian. The distribution is more symmetric, roughly Gaussian, with a peak that shifts to higher velocities for Milky Way mass haloes. We provide the distribution parameters which can be used for predictions for direct DM detection experiments. Our results underline the ability of the galaxy formation processes to modify the properties of dark matter haloes.Comment: 19 pages, 17 figures, analysis strongly improved, main conclusions unchanged, accepted for publication in MNRA

    Design of High-Speed Dual Port 8T SRAM Cell with Simultaneous and Parallel READ-WRITE Feature

    Get PDF
    An innovative 8 transistor (8T) static random access memory (SRAM) architecture with a simple and reliable read operation is presented in this study. LTspice software is used to implement the suggested topology in the 16nm predictive technology model (PTM). Investigations into and comparisons with conventional 6T, 8T, 9T, and 10T SRAM cells have been made regarding read and write operations\u27 delay and power consumption as well as power delay product (PDP). The simulation outcomes show that the suggested design offers the fastest read operation and PDP optimization overall. Compared to the current 6T and 9T topologies, the noise margin is also enhanced. Finally, the comparison of the figure of merit (FoM) indicates the best efficiency of the proposed design
    corecore