7,326 research outputs found
A robust Bayesian analysis of the impact of policy decisions on crop rotations.
We analyse the impact of a policy decision on crop rotations, using the imprecise land use model that was developed by the authors in earlier work. A specific challenge in crop rotation models is that farmer’s crop choices are driven by both policy changes and external non-stationary factors, such as rainfall, temperature and agricultural input and output prices. Such dynamics can be modelled by a non-stationary stochastic process, where crop transition probabilities are multinomial logistic functions of such external factors. We use a robust Bayesian approach to estimate the parameters of our model, and validate it by comparing the model response with a non-parametric estimate, as well as by cross validation. Finally, we use the resulting predictions to solve a hypothetical yet realistic policy problem
On Robust Sequential Analysis - Kiefer-Weiss Optimal Testing under Interval Probability
Usual sequential testing procedures often are very sensitive against even small deviations from the `ideal model' underlying the hypotheses. This makes robust procedures highly desirable. To rely on a clearly defined optimality criterion, we incorporate robustness aspects directly into the formulation of the hypotheses considering the problem of sequentially testing between two interval probabilities (imprecise probabilities). We derive the basic form of the Kiefer-Weiss optimal testing procedure and show how it can be calculated by an easy-to-handle optimization problem. These results are based on the reinterpretation of our testing problem as the task to test between nonparametric composite hypotheses, which allows to adopt the framework of Pavlov (1991). From this we obtain a general result applicable to any interval probability field on a finite sample space, making the approach powerful far beyond robustness considerations, for instance for applications in artificial intelligence dealing with imprecise expert knowledge
Using imprecise continuous time Markov chains for assessing the reliability of power networks with common cause failure and non-immediate repair.
We explore how imprecise continuous time Markov
chains can improve traditional reliability models based
on precise continuous time Markov chains. Specifically,
we analyse the reliability of power networks under very
weak statistical assumptions, explicitly accounting for
non-stationary failure and repair rates and the limited
accuracy by which common cause failure rates can be
estimated. Bounds on typical quantities of interest
are derived, namely the expected time spent in system
failure state, as well as the expected number of
transitions to that state. A worked numerical example
demonstrates the theoretical techniques described.
Interestingly, the number of iterations required for
convergence is observed to be much lower than current
theoretical bounds
Next Generation Sequencing Assay for Detection of Circulating HPV DNA (cHPV-DNA) in Patients Undergoing Radical (Chemo)Radiotherapy in Anal Squamous Cell Carcinoma (ASCC).
Background: Following chemo-radiotherapy (CRT) for human papilloma virus positive (HPV+) anal squamous cell carcinoma (ASCC), detection of residual/recurrent disease is challenging. Patients frequently undergo unnecessary repeated biopsies for abnormal MRI/clinical findings. In a pilot study we assessed the role of circulating HPV-DNA in identifying "true" residual disease. Methods: We prospectively collected plasma samples at baseline (n = 21) and 12 weeks post-CRT (n = 17). Circulating HPV-DNA (cHPV DNA) was measured using a novel next generation sequencing (NGS) assay, panHPV-detect, comprising of two primer pools covering distinct regions of eight high-risk HPV genomes (16, 18, 31, 33, 35, 45, 52, and 58) to detect circulating HPV-DNA (cHPV DNA). cHPV-DNA levels post-CRT were correlated to disease response. Results: In pre-CRT samples, panHPV-detect demonstrated 100% sensitivity and specificity for HPV associated ASCC. PanHPV-detect was able to demonstrate cHPV-DNA in 100% (9/9) patients with T1/T2N0 cancers. cHPV-DNA was detectable 12 weeks post CRT in just 2/17 patients, both of whom relapsed. 1/16 patients who had a clinical complete response (CR) at 3 months post-CRT but relapsed at 9 months and 1/1 patient with a partial response (PR). PanHPV-detect demonstrated 100% sensitivity and specificity in predicting response to CRT. Conclusion: We demonstrate that panHPV-detect, an NSG assay is a highly sensitive and specific test for the identification of cHPV-DNA in plasma at diagnosis. cHPV-DNA post-treatment may predict clinical response to CRT
Bio-Inspired Hovering Control for an Aerial Robot Equipped with a Decoupled Eye and a Rate Gyro
International audienceThis work provides an hovering control strategy for a sighted robot, the eye of which being decoupled from the body and controlled by means of a tiny rotative piezo motor. The main purpose of this paper is to show the effectiveness and the efficiency of this fundamental bio-inspired mechanical decoupling. Indeed, it exhibits several benefits: * it enables to stabilize the robot's gaze on the basis of three bio-inspired oculomotor reflexes (ORs) : a visual fixation reflex (VFR), a translational and rotational vestibulo- ocular reflexes (tVOR and rVOR), * the eye can better, quickly and accurately compensate for sudden, untoward disturbances caused by the vagaries of the supporting head or body, * it yields a reference visual signal that can be used to unbias the rate gyro used to implement the VORs and to stabilize the hovering robot, * it increases the tracking accuracy with moving targets compared to without OR, This paper shows also that lateral disturbances are rejected 2 times faster with the decoupled eye robot, and roll perturbations induce a retinal error 20 times smaller. The occulomotor reflexes enables to cancel retinal error 6 times faster with 5 times lower retinal error picks. The conclusion of the paper is that decoupled eye must be considered as an efficient autonomous flight solution
Irreversible proliferation of magnetic moments at cleaved surfaces of the topological Kondo insulator SmB6
The compound SmB is the best established realization of a topological
Kondo insulator, in which a topological insulator state is obtained through
Kondo coherence. Recent studies have found evidence that the surface of SmB
hosts ferromagnetic domains, creating an intrinsic platform for unidirectional
ballistic transport at the domain boundaries. Here, surface-sensitive X-ray
absorption (XAS) and bulk-sensitive resonant inelastic X-ray scattering (RIXS)
spectra are measured at the Sm N-edge, and used to evaluate electronic
symmetries, excitations and temperature dependence near the surface of cleaved
samples. The XAS data show that the density of large-moment atomic multiplet
states on a cleaved surface grows irreversibly over time, to a degree that
likely exceeds a related change that has recently been observed in the surface
4f orbital occupation
Bayes linear analysis of imprecision in computer models, with application to understanding galaxy formation.
Imprecision arises naturally in the context of computer models and their relation to reality. An imprecise treatment of general computer models is presented, illustrated with an analysis of a complex galaxy formation simulation known as Galform. The analysis involves several different types of uncertainty, one of which (the Model Discrepancy) comes directly from expert elicitation regarding the deficiencies of the model. The Model Discrepancy is therefore treated within an Imprecise framework to reflect more accurately the beliefs of the expert concerning the discrepancy between the model and reality. Due to the conceptual complexity and computationally intensive nature of such a Bayesian imprecise uncertainty analysis, Bayes Linear Methodology is employed which requires consideration of only expectations and variances of all uncertain quantities. Therefore incorporating an Imprecise treatment within a Bayes Linear analysis is shown to be relatively straightforward. The impact of an imprecise assessment on the input space of the model is determined through the use of an Implausibility measure
The wisdom of crowds and the repurposing of artesunate as an anticancer drug.
Artesunate, a semi-synthetic and water-soluble artemisinin-derivative used as an anti-malarial agent, has attracted the attention of cancer researchers due to a broad range of anti-cancer activity including anti-angiogenic, immunomodulatory and treatment-sensitisation effects. In addition to pre-clinical evidence in a range of cancers, a recently completed randomised blinded trial in colorectal cancer has provided a positive signal for further clinical investigation. Used perioperatively artesunate appears to reduce the rate of disease recurrence - and the Neo-Art trial, a larger Phase II RCT, is seeking to confirm this positive effect. However, artesunate is a generic medication, and as with other trials of repurposed drugs, the Neo-Art trial does not have commercial sponsorship. In an innovative move, the trial is seeking funds directly from members of the public via a crowd-funding strategy that may have resonance beyond this single trial
Exponential Decay of Correlations for Strongly Coupled Toom Probabilistic Cellular Automata
We investigate the low-noise regime of a large class of probabilistic
cellular automata, including the North-East-Center model of Toom. They are
defined as stochastic perturbations of cellular automata belonging to the
category of monotonic binary tessellations and possessing a property of
erosion. We prove, for a set of initial conditions, exponential convergence of
the induced processes toward an extremal invariant measure with a highly
predominant spin value. We also show that this invariant measure presents
exponential decay of correlations in space and in time and is therefore
strongly mixing.Comment: 21 pages, 0 figure, revised version including a generalization to a
larger class of models, structure of the arguments unchanged, minor changes
suggested by reviewers, added reference
Unquenching the scalar glueball
Computations in the quenched approximation on the lattice predict the
lightest glueball to be a scalar in the 1.5-1.8 GeV region. Here we calculate
the dynamical effect the coupling to two pseudoscalars has on the mass, width
and decay pattern of such a scalar glueball. These hadronic interactions allow
mixing with the scalar nonet, which is largely fixed by the
well-established K_0^*(1430). This non-perturbative mixing means that, if the
pure gluestate has a width to two pseudoscalar channels of ~100 MeV as
predicted on the lattice, the resulting hadron has a width to these channels of
only ~30 MeV with a large eta-eta component. Experimental results need to be
reanalyzed in the light of these predictions to decide if either the f_0(1500)
or an f_0(1710) coincides with this dressed glueball.Comment: 12 pages, LaTex, 3 Postscript figure
- …
