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Abstract

Usual sequential testing procedures often are very sensitive against

even small deviations from the �ideal model underlying the hypothe�

ses� This makes robust procedures highly desirable� To rely on a clearly

de�ned optimality criterion� we incorporate robustness aspects di�

rectly into the formulation of the hypotheses considering the problem

of sequentially testing between two interval probabilities �imprecise

probabilities�� We derive the basic form of the Kiefer�Weiss optimal
testing procedure and show how it can be calculated by an easy�to�

handle optimization problem� These results are based on the reinter�

pretation of our testing problem as the task to test between nonpara�

metric composite hypotheses� which allows to adopt the framework

of Pavlov ������� From this we obtain a general result applicable to

any interval probability �eld on a �nite sample space� making the

approach powerful far beyond robustness considerations� for instance

for applications in arti�cial intelligence dealing with imprecise expert

knowledge�

�
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� Introduction

Sequential and group sequential procedures help ceteris paribus to reduce the
sample size� So they have become the standard way of analysis especially in
areas� where sampling cost of each unit is high� like in quality management
and in many types of clinical trials �e�g� Jennison and Turnbull �����
In contrast to the �xed sample case� the problem of robustness has rarely
been addressed in sequential analysis� neglecting the fact that many of the
standard procedures must be suspected to be highly sensitive to even small
deviations from the �ideal model� specifying a certain parametric distribution�
But in many situations the distributional assumptions may be satis�ed only
approximately� for instance the measurements may be imprecise or outliers
may occur� Furthermore� sometimes it is even impossible to formulate an
�ideal model� precisely� This is especially true in applications in arti�cial
intelligence� where the models stem from� naturally rather imprecise� expert
judgements�
One approach to take robustness into account �e�g� Christmann ���� will
be called ex post robustifcation in this paper� procedures which are optimal
for the �ideal model� are robusti�ed by passing over to robust versions of the
statistic they are based on� �For instance� in the simplest case� using the me�
dian instead of the mean�� To �nd such robusti�cations� one tries to transfer
experience from the case of a �xed sample size to the sequential case hoping
that �what�s good for �xed sample size can not be bad in the sequential case��
The performance of such robusti�ed versions then is evaluated with respect
to certain measures of performance �for instance the breakdown point� or is
justi�ed by appropriate behaviour in simulation studies�
This paper would like to bring up a conceptually di�erent approach for dis�
cussion� We propose to incorporate robustness considerations directly into
the formulation of the hypotheses and then to search for optimal procedures
in this extended setting� This so�to�say ex ante robusti�cation has the appeal�
ing property that the whole development stands under a certain� precisely






de�ned optimality criterion �in our case a Kiefer�Weiss�type criterion�� There�
fore� the solutions gained are eo ipso justi�ed to be optimal for the setting
considered�
To formulate such hypotheses prepared for robustness� the natural framework
is the notion of interval probability� also known as imprecise probability� This
concept provides a superstructure upon the models commonly used in robust
statistics to describe small deviations from an �ideal model� as well as outliers
�see e�g� Huber ����� Chapter ��� or the review �and the extensions� in Au�
gustin �������� Additionally interval probability is the tool per se to express
uncertain knowledge in form of expert opinions probabilistically �e�g� Shafer
������ Weichselberger and P�ohlmann ����� Yager� Fedrizzi and Kacprzyk
������ A general survey on imprecise probabilities and a comprehensive bib�
liography can be found on the �imprecise probability page� �de Cooman and
Walley �������	 recent developments are discussed� for instance� in Bernard
�������
To make this paper self�contained� in Section � we brie�y collect some basics
from the theory of interval probability� Section 
 turns to sequential testing
and states the optimality criterion under consideration� Our main result de�
scribing the basic form of the optimal procedure is formulated and proven
in Section �� There we also discuss this procedure as well as aspects of its
practical calculation� and �nally illustrate it with a didactic example�

� Interval probability

In the whole paper we will con�ne ourselves to a �nite sample space Y �
fy�� ���� yng with n elements yi and consider� w�o�l�g�� A � P�Y� as the ���eld
on Y containing arbitrary events A� Singletons will separately be denoted by
Ej � fyjg� j � �� � � � � n�
Interval�valued assignments are symbolized by capital letters P ��� and are
called interval probabilities	 the lower interval limit is denoted by L���� the
upper one by U���� As the name interval probability suggests� the probability
of every event A is described by an interval �L�A�� U�A�� � ��	 �� instead of
a single real number p�A�� To distinguish in notation and terminology� we
call every probability in the usual sense� i�e� every set function satisfying
Kolmogoro��s axioms� classical probability and denote it by small letters
p����
The concept of interval probability allows to express the quality of infor�
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mation or the degree of uncertainty in the probability statement itself� By
this also robustness aspects can be taken into account properly� If there are
doubts about the underlying model or if many outliers have to be expected�
neighborhood models can be formulated leading to wider intervals� On the
opposite� small intervals re�ect probabilistic information with high reliability�
Several axiomatizations for interval probabilities have been suggested in lit�
erature� which materially coincide in the case of a �nite sample space� Ac�
cording to them interval�valued set functions

P � A � f�L� U � � � � L � U � �g
A �� �L�A�� U�A��

can be distinguished with respect to the relation between the non�additive
set functions L��� and U��� and the set

M �� fp��� � L�A� � p�A� � U�A� �A � Ag

of all classical probabilities p��� being in accordance with them�
If at leastM 	� 
� which is understood as a minimum requirement� the assign�
ment can be interpreted as not contradictory to the concept of probability� In
this paper we join Weichselberger�s terminology� calling P ��� R�probability
and M its structure �cf� Weichselberger and P�ohlmann ����� Weichsel�
berger ������ Chapter ���� �

If there is additionally an one�to�one correspondence between interval limits
and the structure such that

inf
p�M

p�A� � L�A� � �A � A�

sup
p�M

p�A� � U�A� � �A � A�

an R�probability P ��� is called F�probability �cf� Weichselberger and
P�ohlmann ���� and Weichselberger ��������
Since there are well�de�ned ways to proceed from R� to F�probabilities
�Weichselberger ������� Chapter ��� and ����� we con�ne ourselves in the
following to F�probability�

�In the frequentist theory of interval probability �e�g� Papamarcou and Fine ������� the
set function L��� is called 	dominated
� Walley ������ gives a behaviorial characterization
of such assignments as 	avoiding sure loss
�
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Note that in this situation necessarily L��� and U��� are conjugated�

U�A� � �� L��A�� A � A� ���

Therefore� one of the two set�functions L��� or U��� is su�cient to describe
P ����
In the way it was de�ned above� interval probability is characterized by as�
signing probability components to all events of the ���eld A� It is a huge
advantage of interval probability that it is possible to construct interval
probability from any assignment on arbitrary subsets AL� AU of A� For this�
consider partial assignments �L��� on AL and �U��� on AU such that

�M �� fp��� � M � p�A�  �L�A�� �A � AL�

p�A� � �U�A�� �A � AUg 	� 
�

Then it can be shown that P ��� � �L���� U���� with

L�A� �� inf
p� �M

p�A�� �A � A�

U�A� �� sup
p� �M

p�A�� �A � A�

is an F�probability with structure �M� That is� it is re�ecting exactly the
information contained in �L��� and �U����
An important special case for applications is the situation where AL and
AU are consisting of all singletons Ej� j � �� � � � � n� Then one is led to the
theory of probability intervals �PRI� as described in Weichselberger and
P�ohlmann ����� In this case the limits L��� and U��� will be summarized
in the following way� �

��
L�E�� U�E��
���

���
L�En� U�En�

�
�� �

� Sequential testing

To prepare the study of sequential tests between interval probabilities and
to introduce the notation used throughout this paper� let us brie�y review
some basics of sequential analysis �e�g� Ghosh ������ Irle ������
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��� Classical theory

Consider two hypotheses H� and H�� specifying two sets W�� W� of proba�
bility distributions� with W� � W� 	� 
� on the same measurable space� In
sequential analysis one solves the task of deciding between H� and H� by
considering successively repeated observations� Given bounds �i� i � f�� �g�
on the overall probabilities of falsely rejecting hypothesis Hi� one has to de�
cide at every time point whether one is ready to accept H�� or to accept H��
or whether a further observation has to be drawn� This leads to

De�nition � �
Consider a �nite space Y� a sequence X�� X�� � � � of independent random ele�
ments mapping from a measurable space ���G� into �Y�P�Y�� with common
probability law p���� and the �ltration A��A�� � � � adapted to X�� X�� � � � �

a� A sequential test for testing H� � p��� � W� versus H� � p��� � W� is
a pair �N�D� where N is a stopping time with respect to the sequence
A��A�� � � � and D is an AN�measurable decision rule specifying which
hypothesis is to be accepted once sampling has stopped�

b� For every sequential test �N�D� denote by �i�N�D� p�� i � f�� �g� the
overall probability of deciding in favour of Hi�� i

� � f�� �g� i� 	� i� if
p��� � W� �W� is true� Then� given two bounds �� and ��� let K�����
be the set of of all sequential tests �N�D� with �i�N�D� p� �
�i� �p��� � Wi� i � f�� �g� �

Most work on sequential analysis considers the case of two simple hypotheses
of the form H� � p��� � p���� versus H� � p��� � p���� where p���� and p���� are
classical probabilities� Typically p��� is described by a real�valued parameter
� being an element of a parameter space  � so that one tests de facto�

H� � � � �� versus H� � � � �� �

where� without loss of generality� �� � �� can be assumed� In this case two
criteria have been suggested to distinguish one element of K����� as optimal�
Wald andWolfowitz ����� proposed to de�ne a test as optimal if it minimizes
both IE��N and IE��N among all tests �N�D� � K������ which also contains
level��� tests based on �xed sample sizes� This problem possesses a general
solution� namely the sequential probability ratio test �SPRT� between �� and
��� which �rstly was introduced by Wald ������
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The SPRT� however� may perform quite unsatisfactory for values between ��
and ��� This motivated Kiefer and Weiss ����� to study a di�erent criterion�
a sequential test �N�� D�� solves theKiefer�Weiss problem� if it minimizes
the maximum expected sample size among all �sequential� tests �N�D� �
K������ i�e�

sup
���

IE�N � min
�N�D�

�

�In the modi�ed Kiefer�Weiss problem IE�N is minimized only for a �xed ���
Constructing optimal solutions� with respect to these criteria� often has been
impossible	 therefore usually an asymptotic version with diminishing error
probabilities has been considered �e�g� Eisenberg ������ Hu�man ���
��
Pavlov ������ which will also motivate our generalization de�ned below�
In several papers� the criteria have been extended to the case of composite
hypotheses described by a single one�dimensional parameter of the form �� �
�� and �  ��� �Ghosh ������ Chapter 
����
Restricting considerations on invariant problems� Lai �see Lai ����� and the
references therein� extends the Wald�Wolfowitz situation as well as the mod�
i�ed Kiefer�Weiss problem to composite hypotheses� Pavlov ���� presents
an asymptotic solution to the Kiefer�Weiss problem for very general hypothe�
ses�
Sequential tests are applied in several areas� especially when sampling costs or
a small number of specimens to be investigated are of great importance� This
can be not only in quality control� but also in such �elds like epidemiology or
biometrics �e�g� van der Tweel� Kaaks and van Noord ����� Jennison and
Turnbull ���� or P�ohlmann and Augustin ��������

��� Sequential testing under interval probability

A natural way to test between two F�probabilities P���� � �L������� U �������
and P���� � �L

������� U ���� considers the decision

H� � P ��� � P���� versus H� � P ��� � P���� ���

as a testing problem between the corresponding structuresM� andM��

H� � p��� � M� versus H� � p��� � M� � �
�

So� the task to test between two single� interval�valued hypotheses has been
transformed into a classical composite testing problem� and De�nition � can
also be applied in this context�
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Note� however� that the hypotheses formulated in �
� are of a very complex
form	 only in degenerated special cases they can be described by a one�
dimensional parameter� As a consequence� the standard methods leading to
the construction of optimal sequential tests are no longer directly applicable�
Huber ����� Chapter ��� generalized the Wald�Wolfowitz criterion to inter�
val probability� He succeeded in extending the core of his famous result on the
construction of minimax tests �Huber and Strassen ���
�� to the sequential
situation� provided that the error probabilities are forced to converge to zero�
under certain additional assumptions on the F�probabilities P���� and P�����
the optimal procedure for the composite problem �
� can be obtained by
considering the optimal procedure for the reduced problem !H� � p��� � q����
versus !H� � p��� � q���� where the classical probabilities q���� and q���� are so
called least favorable elements of the structures� Quang ����� has achieved
an analogous result for contamination neighborhoods which are �shrinking�
with increasing sample size�

What was already brie�y mentioned in Section 
�� also applies here� the
optimal procedure in the sense of the Wald�Wolfowitz criterion may perform
quite unsatisfactory �between� the hypotheses� Therefore� in this paper we
will consider an extension of the Kiefer�Weiss criterion to interval probability�
�The modi�ed Kiefer�Weiss problem can be generalized in an analogous way��
In the spirit of Kiefer and Weiss we have to minimize

sup
p����C�Y�

IEpN ���

with C�Y� �M��M��I as the space of all classical probabilities p��� lying
in M� or inM� or in an indi�erence zone I� i�e� a set �between� M� and
M�� The set I has to be speci�ed appropriately� we take I such that C�Y�
is the envelope ofM� �M�� i�e�

C�Y� �� fp���j min
i����

Li�A� � p�A� � max
i����

Ui�A�� �A � Ag� ���

Since even in the classical� single parameter situation� the Kiefer�Weiss crite�
rion in its pure form showed to be not tractable� ��� is certainly too complex
to allow for a general solution� Therefore� we base our generalization of the
Kiefer�Weiss criterion to interval probability on the asymptotic version� which
has usually been considered in literature �cf� the references in Section 
����
Hence we obtain�





De�nition ��
A test �N�� D�� � K����� is called asymptotically optimal among all tests
in K����� if� for �� � � and �� � ��

supp����C�Y� IEpN
�

inf�N�D��K�����
supp����C�Y� IEpN

� � " o���� ���

�

� Construction of an asymptotically optimal

testing procedure

To construct optimal procedures it may look promising to aim at adopt�
ing Huber�s result on Wald�Wolfowitz optimal sequential tests under interval
probability to the criterion formulated in De�nition �� one could try to reduce
the structures to the Huber�Strassen least favorable distributions q���� � M�

and q���� � M�	 and then one would construct the Kiefer�Weiss optimal test
between q���� and q���� in the hope that it is also optimal for the testing prob�
lem in Equation �
�� Unfortunately� as is also demonstrated with Example ��
this conjecture does not work� Apparently� the problem of �nding �asymp�
totically� Kiefer�Weiss optimal procedures has to be based on completely
di�erent methods� which will be presented in Theorem ��

��� Main theorem

Before stating the theorem let us shortly describe the basic ideas underlying
the procedure�
Sequentially� at each step 	 � IN � a new �independent� observation fX� � x�g
with x� � fy�� � � � � yng is drawn� and the adapted relative frequency h������x��
is calculated� based on the �rst �	 � �� observations� This is done in the
following way�

for 	  � � h������x�� ��
�

���

P���
j�� �fXj�x�g�

if it leads to a value in C�Y� �otherwise see below�	

and h����x�� �� ��

It has to be noted that the construction is based on asymptotic considera�
tions� If only few observations have been drawn� it can not be excluded that
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h������x�� would take values not in accordance with C�Y�� They even may

be zero� spoiling the whole product in the numerator of Q
�i�
� �see below� for�

ever� In these cases� h������x�� has to be restricted to the smallest value being
compatible with C�Y� �cf� Equation �����

With these adapted relative frequencies the ratio Q
�i�
� has to be evaluated at

each step 	 for i � f�� �g�

Q
�i�
� �

�Y
r��

h�r����xr�

sup
p����Mi

�Y
r��

p�xr�

���

where p�xr� �� p�fXr � xrg� as the probability of xr �given Hi resp�Mi��

In Q
�i�
� we compare� based on the available information up to that time� an

estimated probability with the highest probability being in accordance with
the hypothesis Hi� If this ratio is for the �rst time �with respect to 	� greater
or equal to ���i � for one index i �i� say�� we call this time point T �i�� and
the process stops with N � T �i��� The decision is to reject the corresponding
hypothesis Hi� � respectively to accept the hypothesis Hi�� �i

� 	� i��	 i�� i�� �
f�� �g�� that is D � Hi���
So we can summarize the procedure in the following theorem�

Theorem �� Let T �i� �� minf	 � Q�i�
�  ���i g� i � f�� �g� with Q

�i�
� as in

Equation ����

The asymptotically optimal testing procedure �N�� D�� in the sense of De��
nition � is�

If T ��� � T ��� then N� � T ��� and D� � H� �the decision is for H��	

if T ��� 
 T ��� then N� � T ��� and D� � H� �the decision is for H���

�

Proof of Theorem � �
The proof of this theorem is based on the idea that it is possible to embed the
situation under consideration into the general framework of Pavlov ����� �

�Pavlov ������ originally investigates sequential procedures for m hypotheses� With
respect to our intended application of his results we con�ne ourselves to the case m � �
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Given a �nite dimensional parameter space  � two hypotheses Hi � � �  i�
with  i �  � i � f�� �g�  �� � � 
� an indi�erence region I �  n� �� ��
and error bounds �� and ��� he constructs a test �N

�� D�� � K����� with�

sup
���

IE�N
�

inf
�N�D��K�����

sup
���

IE�N
� � " o��� � ���

We will show that Pavlov�s results also provide a solution to our problem
of optimal sequential procedures between interval probabilities� Note that
X�� X�� � � � � Xr� � � � are i�i�d�� so that we can write p�fX � yjg� instead of
p�fXr � yjg� for arbitrary r� To embed our problem into Pavlov�s parametric
framework we take

� � ���� � � � � �n�

with
�j �� p�fX � yjg� � p�yj�� j � �� � � � � n�

and the constraint
Pn

j�� �j � �� Therefore� every classical probability
p��� � C�Y� uniquely corresponds to a certain value � �  � In particular� we
have  � C�Y��

With this parametrization Pavlov�s optimality criterion coincides with our
asymptotic optimality criterion in Equation ���� Therefore� if we transfer
Pavlov�s main results �Pavlov ���� Theorem ��� and Lemma ����� to our
situation� we can conclude that the testing procedure in Theorem � is asymp�
totically optimal in the sense of Equation ����
To guarantee this transferance of his results� we need to prove further�

a� the identity of the test statistic T �i�� given here� with Pavlov�s test
statistic

b� that Pavlov�s conditions ���� to ���� �see Pavlov ���� p� ��
�� are
satis�ed in the situation given here�

Ad a� Pavlov uses a test statistic based on the ratio

�Y
r��

p�xrjj#�r���

sup
��Hi

p�xrjj��
��



��

where #�r�� is an appropriate estimate for �� resulting from the �rst �r � ��
observations x�� � � � � xr��� If we additionally take into account Pavlov�s con�
dition ����� we know that #�r�� has to be the maximum likelihood estimate
for ��
Under our embedding the denominators in both statistics are equal� Since
the maximum likelihood estimates of ���� � � � � �n� are the corresponding
�adapted� relative frequencies� also the numerators coincide�
Ad b� As mentioned above� Pavlov�s condition ���� is now automatically sat�
is�ed� The conditions

���� �  is compact and

���� � the sample space Y of each draw is compact

are satis�ed because in our situation

 �

�
���� � � � � �n� � �j � p�yj� � ��� �� and

nX
j��

�j � �

�
�

Therefore�  is a closed polyhedron and hence compact� Notice further that
Y � fy�� � � � � yng is �nite� and therefore trivially compact�
The function p�xjj�� is continuous for all �x� ��� as required in Condition
�
��� Furthermore� the second demand in Condition �
�� is also saties�ed� in�

deed the Kullback�Leibler information� ���� �� � IE�

	
log p�xrjj��

p�xrjj��



� is strictly

positive for � 	� � �see Kullback ����� p� ����� �

��� Practical aspects and implementation

With the adapted version of the relative frequencies h�r����xr� for the nu�

merator in Q
�i�
� no further problems arise�

The denominator of Q
�i�
� generally can be calculated by a non�linear opti�

mization problem�

p�x�� � � � � � p�x��� max
p����Mi

����

subject to the �trivial� linear constraints�

p�yj� � ��� ��� j � �� � � � � n�
nX

j��

p�yj� � �� ����



�


For given F�probabilities Pi��� � �L�i����� U �i������ with structures Mi� the
conditions p��� � Mi can be transformed with the help of Equation ��� into
a system of linear constraints� only using the lower interval limits�

p�
�
j�J

fX � yjg  L�i��
�
j�J

fX � yjg�� �J � f�� ���� ng� ����

In the case of an F�PRI� with interval limits L
�i�
j and U

�i�
j one obtains�

p�yj� � p�fX � yjg�  L�i��fX � yjg� �� L
�i�
j � j � �� � � � � n�

and

p�yj� � p�fX � yjg� � U �i��fX � yjg� �� U
�i�
j � j � �� � � � � n �

Because of xr � fy�� ���� yng the objective function ���� can be formulated as
follows�

p�y��
�� � ��� � p�yn�

�n � max
p����Mi

��
�

with 	j ��
P�

r�� �fXr�yjg� as the absolute frequency of yj and
Pn

j�� 	j � 	�

In general� the maximum can not be given analytically� but this optimization
problem can easily be solved by numerical standard procedures�
Taking into account that in Theorem � the time points T �i�� i � f�� �g� have

to be calculated� it is evident that� as long as Q
�i�
� � ���i � both for i � �

and i � �� a further observation has to be drawn� Furthermore� for most of
the sequential steps� the following easy�to�handle approximation will su�ce�
if the objective function in Equation ���� is only roughly estimated at pj �

L
�i�
j �	� ��� the lower limits of the corresponding component of the F�PRI �for

i � f�� �g�� we obtain�

Q
�i�
� �

�Y
r��

h�r����xr�

L
�i�
�

��
� ��� � L�i�

n

�n
�� Q�

�i�
�

As long as the upper bound Q�

�i�
is less than ���i � for i � � as well as for

i � �� this is also true for Q
�i�
� � and a further observation has to be drawn�



��

This means� instead of calculating at each step 	 a non�linear optimization

problem� it is su�cient �rstly to evaluate Q�

�i�
and to compare it with ���i �

If both terms are less than ���i � a further observation has to be drawn� Only
if for at least one i it is greater or equal to ���i � we need to start a non�linear
optimization routine to check whether the process stops�

��� A didactic example

Now let us illustrate the essentials of the procedure in Theorem � with an
example� which is kept so simple that all calculations can be done by hand�

Example ��

Consider a sample space of three elements�

Y � fy�� y�� y	g �� f�� �� 
g�

and the testing problem

H� � P ��� � P���� versus H� � P ��� � P���� ����

where P���� and P���� are F�probabilities� with corresponding structuresM�

andM�� described by the following F�PRIs
	��

� ��� ���
��� ���
��
 ���

�
� and

�
� ��� ���
���� ����
���� ����

�
� � ����

Choosing �� � �� � ���� the test statistic Q
�i�
� leads to a decision if it is

greater or equal to ���

	 � � �
Now let us assume that the �rst observation x� � �� Then we obtain

Q
�i�
� �

�

sup
p����Mi

p���
�

�
�

�
��

� ��� for i � �

�
���
� ��� for i � � �

�Actually� in the case of a sample space with three or less elements� the structure
of every F�probability is uniquely determined by the assignments on the singletons� the
notions of F�probability and the F�PRI materially coincide�



��

Because� under H� as well as under H�� the ratio Q
�i�
� is less than ��� we have

to draw a further observation�

	 � ��
Let x� � �� Now the relative frequency of this observation� resulting from the
�rst observation� would be zero� This is not compatible with C�Y�� because

C�Y� � fp��� j p�Ej� � �C�Ej�� C�Ej�� �� �min
i����

L
�i�
j �min

i����
U

�i�
j � � j � �� �� 
g�

For our example we obtain

�C���� C���� � ������ �����

�C���� C���� � ������ �����

�C�
�� C�
�� � ������ ����� �

So we have to take� h����x�� � C��� � ����

Now Q
�i�
� results in�

Q
�i�
� �

� � ���

sup
p����Mi

p��� � p���
�

���

sup
p����Mi

p���� � p���� � p�
��
�

If we only use the upper bound Q�
�i�
we obtain�

Q�
�i�
�

�
�

���
�������

� � � �� for i � �

���
��
�����

� � � �� for i � ��

and a further observation has to be drawn�

	 � 
�
Let x	 � �� Here we obtain a relative frequency of

�
�
� which is compatible with

C�Y� �especially with �C���� C������ and therefore h����x	� �
�
�
� By calculating

the approximation

Q	
�i�
�

�
�

�������
��������

� ���� for i � �

�������
��
������

� ��� for i � ��

we see that we have to determine the exact value for Q���
	 �



��

Q
���
	 �

��� � ���

sup
p����M�

p���� � p����
�
��� � ���

���� � ��

� ����
 � ���

Again we have to continue drawing�

	 � ��
Let x
 � �� Here we would obtain a relative frequency of

�
	
which again is

not compatible with C�Y�� We have to restrict h�	��x
� to C��� � ����

The approximative formula leads to Q

���
� 
��� and Q


���
� 
���	 therefore

we have to determine the exact value of Q
���

 �

Q
���

 � 
�����

	 � ��
Already with the further observations� x� � �� x� � �� x � � the procedure
stops at�

Q
�i�
 �

�
�
������ 
 �� for i � �

���� � �� for i � ��

Now we have� T ��� � � and T ��� 
 � and therefore N� � T ���� So the decision
is for H� � D

� � H��
Let us stay with the example a bit longer and brie�y discuss some prin�
ciple aspects� The structures M� and M� in the example above can also
be connected to a model often used in robust statistics� they can be inter�
preted as total variation neighbourhoods around the centers p���� and p����
with p��y�� � ��
� p��y�� � ��
� p��y	� � ��� and p���� with p��y�� � �����
p��y�� � ��
�� p��y	� � ����� From this point of view�M� andM� are con�
sisting of all classical probabilities which are close to p���� or p���� in the
sense that their distance in the total variation norm is less than or equal
to ���� Then� ���� can be understood as a robust test of the hypotheses
H� � p��� � p���� versus H� � p��� � p����� where we de facto test the hypothe�
ses Hi � �p��� is approximately pi�����
An additional fact is worth mentioning� this example also provides a simple
counterexample demonstrating that least favourable pairs can not be directly
used to construct the optimal test statistic� Huber�s ����� result on the
Wald�Wolfowitz optimal testing between interval probabilities can not be
transferred to the Kiefer�Weiss criterion considered here�



��

It can be shown that in this situation �q����� q����� with

q��y�� � ���� q��y�� � ��
� q��y	� � ��
 and

q��y�� � ��� "
�

��
� q��y�� � ��
��

�

��
� q��y	� � ����

is a least favourable pair in the sense of Huber and Strassen ���
��
Applying �� to the hypothesis

H� � p��� � q���� and H� � p��� � q����

derived from the least favourable pair does not lead to the test statistic
Q

�i�
� in Equation ���� The Kiefer�Weiss optimal procedure based on the least

favorable pair di�ers from the optimal test for the interval�valued hypotheses�

� Concluding remarks

This paper developed a general framework for robust sequential testing of
two hypotheses� Using the concept of interval probability we incorporated
robustness directly into the formulation of the hypotheses� For these �cautious
hypotheses� we then have� with the Kiefer�Weiss criterion� an unambiguous
optimality criterion� This �ex ante robusti�cation� is very much in the spirit
of Huber ����� who� however� considered a di�erent optimality criterion�
namely an extension of the Wald�Wolfowitz criterion to interval probability�
For arbitrary interval probabilities on a �nite sample space we gave the gen�
eral form of an Kiefer�Weiss optimal testing procedure and showed how it can
be derived in an operational way� Far beyond the robustness considerations
originally motivating our research� the generality of our results promises a
huge range of potential application� In particular we think of arti�cial intelli�
gence� where interval probability has shown to be a powerful means to model
uncertain expert knowledge�
Several topics of further research suggest themselves� First of all� the pro�
cedure proposed evidently needs more detailed investigations from the nu�
merical point of view� Secondly� with respect to application for instance in
biometrics� an extension to group sequential tests would be highly desirable�
The situation of a �xed sample size at every step is formally contained by ap�
propriately enlarging the underlying sample space Y� Adaptive choice of the
sample size at every step is much more di�cult	 it may even need a complete
reconsideration of the issue from the very beginning�



��

The example above showed that Huber�s ����� p� ��
� result can not be
directly extended to the Kiefer�Weiss situation� the optimal procedure does
not coincide with the optimal test between least favorable elements of the
two structures� Therefore� it is still an open question whether the optimal
procedure can also be obtained by considering an equivalent testing problem
which is easier to be solved�
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