110 research outputs found

    Optical electronics for meteor observations

    Get PDF
    Spectral observations of meteors have been carried out for several years using an optical electronics facility. Interest has centered on faint meteors and their trails in the period of intensive meteor showers. Over 800 meteors were registered during the observation period, with spectrograms obtained for 170 of these. A total of 86 meteors were photographed from two sites and for 25 of these spectrograms of the meteors as well as their trails were obtained. All meteors have undergone routine processing in order to determine atmospheric characteristics. Results are discussed

    The effect of water dynamics on conformation changes of albumin in pre-denaturation state:photon correlation spectroscopy and simulation

    Get PDF
    Water is essential for protein three-dimensional structure, conformational dynamics, and activity. Human serum albumin (HSA) is one of major blood plasma proteins, and its functioning is fundamentally determined by the dynamics of surrounding water. The goal of this study is to link the conformational dynamics of albumin to the thermal motions in water taking place in the physiological temperature range. We report the results of photon correlation spectroscopy and molecular dynamics simulations of HSA in aqueous solution. The experimental data processing produced the temperature dependence of the HSA hydrodynamic radius and its zeta potential. Molecular dynamics reproduced the results of experiments and revealed changes in the secondary structure caused by the destruction of hydrogen bonds in the macromolecule's globule

    Structural characterization of cephaeline binding to the eukaryotic ribosome using Cryo-Electron Microscopy

    Get PDF
    The eukaryotic ribosome is emerging as a promising target against human pathogens, includ- ing amoeba, protozoans, and fungi. Among the eukaryotic-specific families of inhibitors, al- kaloids are known to bind to the eukaryotic ribosome and inhibit translocation. However, these inhibitors have varying medical indications and toxicity to humans. Structural information is available for only two of them, cryptopleurine and emetine. Aim. In our work, we aimed to elucidate the binding mechanism of another alkaloid, cephaeline, to the eukaryotic ribosome. Methods. We used cryogenic electron microscopy and cell-free assays to reveal its mechanism of action. Results. Our results indicate that cephaeline binds to the E-tRNA binding site on the small subunit of the eukaryotic ribosome. Similar to emetine, cephaeline forms a stacking interaction with G889 of 18S rRNA and L132 of the protein uS11. We propose the hypothesis of cephaeline specificity to eukaryotes by comparing the interaction pattern of cephaeline with other inhibitors binding to the E-site of the mRNA tunnel. Conclusions. The high-resolution structure of ribosome-bound cephaeline (2.45 Å) allowed us to precisely determine the in- hibitor’s position in the binding site, which holds potential for the development of the next generation of drugs targeting the mRNA tunnel of the ribosome

    Networked buffering: a basic mechanism for distributed robustness in complex adaptive systems

    Get PDF
    A generic mechanism - networked buffering - is proposed for the generation of robust traits in complex systems. It requires two basic conditions to be satisfied: 1) agents are versatile enough to perform more than one single functional role within a system and 2) agents are degenerate, i.e. there exists partial overlap in the functional capabilities of agents. Given these prerequisites, degenerate systems can readily produce a distributed systemic response to local perturbations. Reciprocally, excess resources related to a single function can indirectly support multiple unrelated functions within a degenerate system. In models of genome:proteome mappings for which localized decision-making and modularity of genetic functions are assumed, we verify that such distributed compensatory effects cause enhanced robustness of system traits. The conditions needed for networked buffering to occur are neither demanding nor rare, supporting the conjecture that degeneracy may fundamentally underpin distributed robustness within several biotic and abiotic systems. For instance, networked buffering offers new insights into systems engineering and planning activities that occur under high uncertainty. It may also help explain recent developments in understanding the origins of resilience within complex ecosystems. \ud \u
    • …
    corecore