288 research outputs found
Supersonic dislocations observed in a plasma crystal
Experimental results on the dislocation dynamics in a two-dimensional plasma
crystal are presented. Edge dislocations were created in pairs in lattice
locations where the internal shear stress exceeded a threshold and then moved
apart in the glide plane at a speed higher than the sound speed of shear waves,
. The experimental system, a plasma crystal, allowed observation of this
process at an atomistic (kinetic) level. The early stage of this process is
identified as a stacking fault. At a later stage, supersonically moving
dislocations generated shear-wave Mach cones
Application of bicyclic and cage compounds
The results of a literature survey of the field of bicyclic and cage compounds were presented, with the objective of identifying those types of compounds with unusual physical and chemical stability, and determining what practical applications have been found for these compounds. Major applications have been as polymers, polymer additives, medicinals, and pesticides. Lesser applications have included fuels, fuel additives, lubricants, lubricant additives, and perfumes. Several areas where further work might be useful were also outlined; these are primarily in the areas of polymers, polymer additives, medicinals, and synthetic lubricants
Ice nucleation by surrogates for atmospheric mineral dust and mineral dust/sulfate particles at cirrus temperatures
International audienceThis study examines the potential role of some types of mineral dust and mineral dust with sulfuric acid coatings as heterogeneous ice nuclei at cirrus temperatures. Commercially-available nanoscale powder samples of aluminum oxide, alumina-silicate and iron oxide were used as surrogates for atmospheric mineral dust particles, with and without multilayer coverage of sulfuric acid. A sample of Asian dust aerosol particles was also studied. Measurements of ice nucleation were made using a continuous-flow ice-thermal diffusion chamber (CFDC) operated to expose size-selected aerosol particles to temperatures between ?45 and ?60°C and a range of relative humidity above ice-saturated conditions. Pure metal oxide particles supported heterogeneous ice nucleation at lower relative humidities than those required to homogeneously freeze sulfuric acid solution particles at sizes larger than about 50 nm. The ice nucleation behavior of the same metal oxides coated with sulfuric acid indicate heterogeneous freezing at lower relative humidities than those calculated for homogeneous freezing of the diluted particle coatings. The effect of soluble coatings on the ice activation relative humidity varied with the respective uncoated core particle types, but for all types the heterogeneous freezing rates increased with particle size for the same thermodynamic conditions. For a selected size of 200 nm, the natural mineral dust particles were the most effective ice nuclei tested, supporting heterogeneous ice formation at an ice relative humidity of approximately 135%, irrespective of temperature. Modified homogeneous freezing parameterizations and theoretical formulations are shown to have application to the description of heterogeneous freezing of mineral dust-like particles with soluble coatings
LANSCE Digital Low Level RF Upgrade
Incremental upgrades of the legacy low level RF (LLRF) equipment-50 years for
the Los Alamos Neutron Science Center (LANSCE)-involves challenges and problems
not seen with new and total replacement opportunities. The digital LLRF upgrade
at LANSCE has deployed 30 of the 53 required systems as of September 2022. This
paper describes the performance of the digital upgrade, current status, and
future installations along with the technical challenges, including unexpected
challenges, associated with deploying new digital systems in conjunction with
legacy analog equipment. In addition, this paper discusses the operational
details of simultaneous multi-energy beam operations using high energy
re-bunching, beam-type specific set points and simultaneous multi-beam
operations at LANSCE. The adaptability of the digital LLRF systems is essential
as the design is able to accommodate new control and beam parameters associated
with future systems without significant hardware modifications such as the
expected LANSCE Modernization Program. This adaptability of the digital LLRF
technology was recently demonstrated with the Module 1, 201.25-MHz high-power
RF upgrade completed in 2021.Comment: Talk presented at LLRF Workshop 2022 (LLRF2022, arXiv:2208.13680
AP-4 vesicles contribute to spatial control of autophagy via RUSC-dependent peripheral delivery of ATG9A.
Adaptor protein 4 (AP-4) is an ancient membrane trafficking complex, whose function has largely remained elusive. In humans, AP-4 deficiency causes a severe neurological disorder of unknown aetiology. We apply unbiased proteomic methods, including 'Dynamic Organellar Maps', to find proteins whose subcellular localisation depends on AP-4. We identify three transmembrane cargo proteins, ATG9A, SERINC1 and SERINC3, and two AP-4 accessory proteins, RUSC1 and RUSC2. We demonstrate that AP-4 deficiency causes missorting of ATG9A in diverse cell types, including patient-derived cells, as well as dysregulation of autophagy. RUSC2 facilitates the transport of AP-4-derived, ATG9A-positive vesicles from the trans-Golgi network to the cell periphery. These vesicles cluster in close association with autophagosomes, suggesting they are the "ATG9A reservoir" required for autophagosome biogenesis. Our study uncovers ATG9A trafficking as a ubiquitous function of the AP-4 pathway. Furthermore, it provides a potential molecular pathomechanism of AP-4 deficiency, through dysregulated spatial control of autophagy
Enhanced mitochondrial superoxide scavenging does not Improve muscle insulin action in the high fat-fed mouse
Improving mitochondrial oxidant scavenging may be a viable strategy for the treatment of insulin resistance and diabetes. Mice overexpressing the mitochondrial matrix isoform of superoxide dismutase (sod2(tg) mice) and/or transgenically expressing catalase within the mitochondrial matrix (mcat(tg) mice) have increased scavenging of O2(Ë™-) and H2O2, respectively. Furthermore, muscle insulin action is partially preserved in high fat (HF)-fed mcat(tg) mice. The goal of the current study was to test the hypothesis that increased O2(Ë™-) scavenging alone or in combination with increased H2O2 scavenging (mtAO mice) enhances in vivo muscle insulin action in the HF-fed mouse. Insulin action was examined in conscious, unrestrained and unstressed wild type (WT), sod2(tg), mcat(tg) and mtAO mice using hyperinsulinemic-euglycemic clamps (insulin clamps) combined with radioactive glucose tracers following sixteen weeks of normal chow or HF (60% calories from fat) feeding. Glucose infusion rates, whole body glucose disappearance, and muscle glucose uptake during the insulin clamp were similar in chow- and HF-fed WT and sod2(tg) mice. Consistent with our previous work, HF-fed mcat(tg) mice had improved muscle insulin action, however, an additive effect was not seen in mtAO mice. Insulin-stimulated Akt phosphorylation in muscle from clamped mice was consistent with glucose flux measurements. These results demonstrate that increased O2(Ë™-) scavenging does not improve muscle insulin action in the HF-fed mouse alone or when coupled to increased H2O2 scavenging
Methods to Reduce Forest Residue Volume after Timber Harvesting and Produce Black Carbon
Forest restoration often includes thinning to reduce tree density and improve ecosystem processes and function while also reducing the risk of wildfire or insect and disease outbreaks. However, one drawback of these restoration treatments is that slash is often burned in piles that may damage the soil and require further restoration activities. Pile burning is currently used on many forest sites as the preferred method for residue disposal because piles can be burned at various times of the year and are usually more controlled than broadcast burns. In many cases, fire can be beneficial to site conditions and soil properties, but slash piles, with a large concentration of wood, needles, forest floor, and sometimes mineral soil, can cause long-term damage. We describe several alternative methods for reducing nonmerchantable forest residues that will help remove excess woody biomass, minimize detrimental soil impacts, and create charcoal for improving soil organic matter and carbon sequestration
Cost-minimization analysis of oral versus intravenous antibiotic treatment for Klebsiella pneumoniae liver abscess
A cost-minimization analysis was conducted for Klebsiella pneumoniae liver abscess (KLA) patients enrolled in a randomized controlled trial which found oral ciprofloxacin to be non-inferior to intravenous (IV) ceftriaxone in terms of clinical outcomes. Healthcare service utilization and cost data were obtained from medical records and estimated from self-reported patient surveys in a non-inferiority trial of oral ciprofloxacin versus IV ceftriaxone administered to 152 hospitalized adults with KLA in Singapore between November 2013 and October 2017. Total costs were evaluated by category and payer, and compared between oral and IV antibiotic groups over the trial period of 12Â weeks. Among the subset of 139 patients for whom cost data were collected, average total cost over 12Â weeks was 14,620-20,569 (95% CI, 22,842) for the IV ceftriaxone group, largely driven by lower average outpatient costs, as the average number of outpatient visits was halved for the oral ciprofloxacin group. There were no other statistically significant differences, either in inpatient costs or in other informal healthcare costs. Oral ciprofloxacin is less costly than IV ceftriaxone in the treatment of Klebsiella liver abscess, largely driven by reduced outpatient service costs.Trial registration: ClinicalTrials.gov Identifier NCT01723150 (7/11/2012)
- …