48 research outputs found

    Ontogeny of Numerical Abilities in Fish

    Get PDF
    Background: It has been hypothesised that human adults, infants, and non-human primates share two non-verbal systems for enumerating objects, one for representing precisely small quantities (up to 3–4 items) and one for representing approximately larger quantities. Recent studies exploiting fish’s spontaneous tendency to join the larger group showed that their ability in numerical discrimination closely resembles that of primates but little is known as to whether these capacities are innate or acquired. Methodology/Principal Findings: We used the spontaneous tendency to join the larger shoal to study the limits of the quantity discrimination of newborn and juvenile guppies. One-day old fish chose the larger shoal when the choice was between numbers in the small quantity range, 2 vs. 3 fish, but not when they had to choose between large numbers, 4 vs. 8 or 4 vs. 12, although the numerical ratio was larger in the latter case. To investigate the relative role of maturation and experience in large number discrimination, fish were raised in pairs (with no numerical experience) or in large social groups and tested at three ages. Forty-day old guppies from both treatments were able to discriminate 4 vs. 8 fish while at 20 days this was only observed in fish grown in groups. Control experiments showed that these capacities were maintained after guppies were prevented from using non numerical perceptual variables that co-vary with numerosity. Conclusions/Significance: Overall, our results suggest the ability of guppies to discriminate small numbers is innate and i

    Fish Intelligence, Sentience and Ethics

    Get PDF
    Fish are one of the most highly utilised vertebrate taxa by humans; they are harvested from wild stocks as part of global fishing industries, grown under intensive aquaculture conditions, are the most common pet and are widely used for scientific research. But fish are seldom afforded the same level of compassion or welfare as warm-blooded vertebrates. Part of the problem is the large gap between people’s perception of fish intelligence and the scientific reality. This is an important issue because public perception guides government policy. The perception of an animal’s intelligence often drives our decision whether or not to include them in our moral circle. From a welfare perspective, most researchers would suggest that if an animal is sentient, then it can most likely suffer and should therefore be offered some form of formal protection. There has been a debate about fish welfare for decades which centres on the question of whether they are sentient or conscious. The implications for affording the same level of protection to fish as other vertebrates are great, not least because of fishing-related industries. Here, I review the current state of knowledge of fish cognition starting with their sensory perception and moving on to cognition. The review reveals that fish perception and cognitive abilities often match or exceed other vertebrates. A review of the evidence for pain perception strongly suggests that fish experience pain in a manner similar to the rest of the vertebrates. Although scientists cannot provide a definitive answer on the level of consciousness for any nonhuman vertebrate, the extensive evidence of fish behavioural and cognitive sophistication and pain perception suggests that best practice would be to lend fish the same level of protection as any other vertebrate

    Learning multiple rules simultaneously: affixes are more salient than reduplications

    Get PDF
    Language learners encounter numerous opportunities to learn regularities, but need to decide which of these regularities to learn, because some are not productive in their native language. Here, we present an account of rule learning based on perceptual and memory primitives (Endress, Dehaene-Lambertz, & Mehler, 2007; Endress, Nespor, & Mehler, 2009), suggesting that learners preferentially learn regularities that are more salient to them, and that the pattern of salience reflects the frequency of language features across languages. We contrast this view with previous artificial grammar learning research, which suggests that infants “choose” the regularities they learn based on rational, Bayesian criteria (Frank & Tenenbaum, 2011; Gerken, 2006, 2010). In our experiments, adult participants listened to syllable strings starting with a syllable reduplication and always ending with the same “a!x” syllable, or to syllable strings starting with this “a!x” syllable and ending with the “reduplication.” Both a!xation and reduplication are frequently used for morphological marking across languages. We find three crucial results. First, participants learned both regularities simultaneously. Second, a!xation regularities seemed easier to learn than reduplication regularities. Third, regularities in sequence o↔sets were easier to learn than regularities at sequence onsets. We show that these results are inconsistent with previous Bayesian rule learning models, but mesh well with the perceptual or memory primitives view. Further, we show that the pattern of salience revealed in our experiments reflects the distribution of regularities across languages. Ease of acquisition might thus be one determinant of the frequency of regularities across languages

    A revision of Chrysopidae (Neuroptera) from the late Eocene Florissant Formation Colorado, with description of new species

    No full text
    Makarkin, Vladimir N., Antell, Gwen S., Archibald, S. Bruce (2022): A revision of Chrysopidae (Neuroptera) from the late Eocene Florissant Formation Colorado, with description of new species. Zootaxa 5133 (3): 301-345, DOI: https://doi.org/10.11646/zootaxa.5133.3.

    Transfected DNA is mutated in monkey, mouse, and human cells.

    No full text
    corecore