756 research outputs found
Mechanical effect of van der Waals interactions observed in real time in an ultracold Rydberg gas
We present time-resolved spectroscopic measurements of Rydberg-Rydberg
interactions in an ultracold gas, revealing the pair dynamics induced by
long-range van der Waals interactions between the atoms. By detuning the
excitation laser, a specific pair distribution is prepared. Penning ionization
on a microsecond timescale serves as a probe for the pair dynamics under the
influence of the attractive long-range forces. Comparison with a Monte Carlo
model not only explains all spectroscopic features but also gives quantitative
information about the interaction potentials. The results imply that the
interaction-induced ionization rate can be influenced by the excitation laser.
Surprisingly, interaction-induced ionization is also observed for Rydberg
states with purely repulsive interactions
Recommended from our members
Boreal forest CO2 exchange and evapotranspiration predicted by nine ecosystem process models: Intermodel comparisons and relationships to field measurements
Nine ecosystem process models were used to predict CO2 and water vapor exchanges by a 150-year-old black spruce forest in central Canada during 1994–1996 to evaluate and improve the models. Three models had hourly time steps, five had daily time steps, and one had monthly time steps. Model input included site ecosystem characteristics and meteorology. Model predictions were compared to eddy covariance (EC) measurements of whole-ecosystem CO2exchange and evapotranspiration, to chamber measurements of nighttime moss-surface CO2release, and to ground-based estimates of annual gross primary production, net primary production, net ecosystem production (NEP), plant respiration, and decomposition. Model-model differences were apparent for all variables. Model-measurement agreement was good in some cases but poor in others. Modeled annual NEP ranged from −11 g C m−2 (weak CO2source) to 85 g C m−2 (moderate CO2 sink). The models generally predicted greater annual CO2sink activity than measured by EC, a discrepancy consistent with the fact that model parameterizations represented the more productive fraction of the EC tower “footprint.” At hourly to monthly timescales, predictions bracketed EC measurements so median predictions were similar to measurements, but there were quantitatively important model-measurement discrepancies found for all models at subannual timescales. For these models and input data, hourly time steps (and greater complexity) compared to daily time steps tended to improve model-measurement agreement for daily scale CO2 exchange and evapotranspiration (as judged by root-mean-squared error). Model time step and complexity played only small roles in monthly to annual predictions
Comparison of boreal ecosystem model sensitivity to variability in climate and forest site parameters
Ecosystem models are useful tools for evaluating environmental controls on carbon and water cycles under past or future conditions. In this paper we compare annual carbon and water fluxes from nine boreal spruce forest ecosystem models in a series of sensitivity simulations. For each comparison, a single climate driver or forest site parameter was altered in a separate sensitivity run. Driver and parameter changes were prescribed principally to be large enough to identify and isolate any major differences in model responses, while also remaining within the range of variability that the boreal forest biome may be exposed to over a time period of several decades. The models simulated plant production, autotrophic and heterotrophic respiration, and evapotranspiration (ET) for a black spruce site in the boreal forest of central Canada (56°N). Results revealed that there were common model responses in gross primary production, plant respiration, and ET fluxes to prescribed changes in air temperature or surface irradiance and to decreased precipitation amounts. The models were also similar in their responses to variations in canopy leaf area, leaf nitrogen content, and surface organic layer thickness. The models had different sensitivities to certain parameters, namely the net primary production response to increased CO2 levels, and the response of soil microbial respiration to precipitation inputs and soil wetness. These differences can be explained by the type (or absence) of photosynthesis-CO2 response curves in the models and by response algorithms of litter and humus decomposition to drying effects in organic soils of the boreal spruce ecosystem. Differences in the couplings of photosynthesis and soil respiration to nitrogen availability may also explain divergent model responses. Sensitivity comparisons imply that past conditions of the ecosystem represented in the models\u27 initial standing wood and soil carbon pools, including historical climate patterns and the time since the last major disturbance, can be as important as potential climatic changes to prediction of the annual ecosystem carbon balance in this boreal spruce forest
Adiabatic Formation of Rydberg Crystals with Chirped Laser Pulses
Ultracold atomic gases have been used extensively in recent years to realize
textbook examples of condensed matter phenomena. Recently, phase transitions to
ordered structures have been predicted for gases of highly excited, 'frozen'
Rydberg atoms. Such Rydberg crystals are a model for dilute metallic solids
with tunable lattice parameters, and provide access to a wide variety of
fundamental phenomena. We investigate theoretically how such structures can be
created in four distinct cold atomic systems, by using tailored
laser-excitation in the presence of strong Rydberg-Rydberg interactions. We
study in detail the experimental requirements and limitations for these
systems, and characterize the basic properties of small crystalline Rydberg
structures in one, two and three dimensions.Comment: 23 pages, 10 figures, MPIPKS-ITAMP Tandem Workshop, Cold Rydberg
Gases and Ultracold Plasmas (CRYP10), Sept. 6-17, 201
Optical probing of the Coulomb interactions of an electrically pumped polariton condensate
The authors would like to thank the State of Bavaria for financial support. SM and TL were supported by the NAP Start-Up grant M4081630 and MOE AcRF Tier 1 grant 2016-T1-001-084.We report on optical probing of the Coulomb interactions in an electrically driven exciton-polariton laser. By positioning a weak non-resonant Gaussian continuous wave-beam with a diameter of 2 μm inside an electrical condensate excited in a 20 μm diameter micropillar, we study a repulsion effect which is characteristic of the part-excitonic nature of the microcavity system in strong coupling. It manifests itself in a modified real space distribution of the emission pattern. Furthermore, polariton repulsion results in a continuous blueshift of the emission with increased power of the probe beam. A Gross-Pitaevskii equation approach based on modeling the electrical and optical potentials explains our experimental data.PostprintPeer reviewe
Coherent Population Trapping with Controlled Interparticle Interactions
We investigate Coherent Population Trapping in a strongly interacting
ultracold Rydberg gas. Despite the strong van der Waals interactions and
interparticle correlations, we observe the persistence of a resonance with
subnatural linewidth at the single-particle resonance frequency as we tune the
interaction strength. This narrow resonance cannot be understood within a
meanfield description of the strong Rydberg--Rydberg interactions. Instead, a
many-body density matrix approach, accounting for the dynamics of interparticle
correlations, is shown to reproduce the observed spectral features
Phase diagrams of magnetopolariton gases
The magnetic field effect on phase transitions in electrically neutral
bosonic systems is much less studied than those in fermionic systems, such as
superconducting or ferromagnetic phase transitions. Nevertheless, composite
bosons are strongly sensitive to magnetic fields: both their internal structure
and motion as whole particles may be affected. A joint effort of ten
laboratories has been focused on studies of polariton lasers, where
non-equilibrium Bose-Einstein condensates of bosonic quasiparticles,
exciton-polaritons, may appear or disappear under an effect of applied magnetic
fields. Polariton lasers based on pillar or planar microcavities were excited
both optically and electrically. In all cases a pronounced dependence of the
onset to lasing on the magnetic field has been observed. For the sake of
comparison, photon lasing (lasing by an electron-hole plasma) in the presence
of a magnetic field has been studied on the same samples as polariton lasing.
The threshold to photon lasing is essentially governed by the excitonic Mott
transition which appears to be sensitive to magnetic fields too. All the
observed experimental features are qualitatively described within a uniform
model based on coupled diffusion equations for electrons, holes and excitons
and the Gross-Pitaevskii equation for exciton-polariton condensates. Our
research sheds more light on the physics of non-equilibrium Bose-Einstein
condensates and the results manifest high potentiality of polariton lasers for
spin-based quantum logic applications.Comment: 21 pages, 11 figure
Observation of the transition from lasing driven by a bosonic to a fermionic reservoir in a GaAs quantum well microcavity
We show that by monitoring the free carrier reservoir in a GaAs-based quantum well microcavity under non-resonant pulsed optical pumping, lasing supported by a fermionic reservoir (photon lasing) can be distinguished from lasing supported by a reservoir of bosons (polariton lasing). Carrier densities are probed by measuring the photocurrent between lateral contacts deposited directly on the quantum wells of a microcavity that are partially exposed by wet chemical etching. We identify two clear thresholds in the input-output characteristic of the photoluminescence signal which can be attributed to polariton and photon lasing, respectively. The power dependence of the probed photocurrent shows a distinct kink at the threshold power for photon lasing due to increased radiative recombination of free carriers as stimulated emission into the cavity mode sets in. At the polariton lasing threshold on the other hand, the nonlinear increase of the luminescence is caused by stimulated scattering of exciton-polaritons to the ground state which do not contribute directly to the photocurrent.PostprintPeer reviewe
Oak forest carbon and water simulations:Model intercomparisons and evaluations against independent data
Models represent our primary method for integration of small-scale, process-level phenomena into a comprehensive description of forest-stand or ecosystem function. They also represent a key method for testing hypotheses about the response of forest ecosystems to multiple changing environmental conditions. This paper describes the evaluation of 13 stand-level models varying in their spatial, mechanistic, and temporal complexity for their ability to capture intra- and interannual components of the water and carbon cycle for an upland, oak-dominated forest of eastern Tennessee. Comparisons between model simulations and observations were conducted for hourly, daily, and annual time steps. Data for the comparisons were obtained from a wide range of methods including: eddy covariance, sapflow, chamber-based soil respiration, biometric estimates of stand-level net primary production and growth, and soil water content by time or frequency domain reflectometry. Response surfaces of carbon and water flux as a function of environmental drivers, and a variety of goodness-of-fit statistics (bias, absolute bias, and model efficiency) were used to judge model performance.
A single model did not consistently perform the best at all time steps or for all variables considered. Intermodel comparisons showed good agreement for water cycle fluxes, but considerable disagreement among models for predicted carbon fluxes. The mean of all model outputs, however, was nearly always the best fit to the observations. Not surprisingly, models missing key forest components or processes, such as roots or modeled soil water content, were unable to provide accurate predictions of ecosystem responses to short-term drought phenomenon. Nevertheless, an inability to correctly capture short-term physiological processes under drought was not necessarily an indicator of poor annual water and carbon budget simulations. This is possible because droughts in the subject ecosystem were of short duration and therefore had a small cumulative impact. Models using hourly time steps and detailed mechanistic processes, and having a realistic spatial representation of the forest ecosystem provided the best predictions of observed data. Predictive ability of all models deteriorated under drought conditions, suggesting that further work is needed to evaluate and improve ecosystem model performance under unusual conditions, such as drought, that are a common focus of environmental change discussions
- …
