817 research outputs found
Fabrication of Atomically Precise Nanopores in Hexagonal Boron Nitride
We demonstrate the fabrication of individual nanopores in hexagonal boron
nitride (hBN) with atomically precise control of the pore size. Previous
methods of pore production in other 2D materials create pores of irregular
geometry with imprecise diameters. By taking advantage of the preferential
growth of boron vacancies in hBN under electron beam irradiation, we are able
to observe the pore growth via transmission electron microscopy, and terminate
the process when the pore has reached its desired size. Careful control of beam
conditions allows us to nucleate and grow individual triangular and hexagonal
pores with diameters ranging from subnanometer to 6nm over a large area of
suspended hBN using a conventional TEM. These nanopores could find application
in molecular sensing, DNA sequencing, water desalination, and molecular
separation. Furthermore, the chemical edge-groups along the hBN pores can be
made entirely nitrogen terminated or faceted with boron-terminated edges,
opening avenues for tailored functionalization and extending the applications
of these hBN nanopores.Comment: 5 pages, 6 figure
Local formation of nitrogen-vacancy centers in diamond by swift heavy ions
We exposed nitrogen-implanted diamonds to beams of swift uranium and gold
ions (~1 GeV) and find that these irradiations lead directly to the formation
of nitrogen vacancy (NV) centers, without thermal annealing. We compare the
photoluminescence intensities of swift heavy ion activated NV- centers to those
formed by irradiation with low-energy electrons and by thermal annealing. NV-
yields from irradiations with swift heavy ions are 0.1 of yields from low
energy electrons and 0.02 of yields from thermal annealing. We discuss possible
mechanisms of NV-center formation by swift heavy ions such as electronic
excitations and thermal spikes. While forming NV centers with low efficiency,
swift heavy ions enable the formation of three dimensional NV- assemblies over
relatively large distances of tens of micrometers. Further, our results show
that NV-center formation is a local probe of (partial) lattice damage
relaxation induced by electronic excitations from swift heavy ions in diamond.Comment: to be published in Journal of Applied Physic
Effects of low energy electron irradiation on formation of nitrogen-vacancy centers in single-crystal diamond
Exposure to beams of low energy electrons (2 to 30 keV) in a scanning
electron microscope locally induces formation of NV-centers without thermal
annealing in diamonds that have been implanted with nitrogen ions. We find that
non-thermal, electron beam induced NV-formation is about four times less
efficient than thermal annealing. But NV-center formation in a consecutive
thermal annealing step (800C) following exposure to low energy electrons
increases by a factor of up to 1.8 compared to thermal annealing alone. These
observations point to reconstruction of nitrogen-vacancy complexes induced by
electronic excitations from low energy electrons as an NV-center formation
mechanism and identify local electronic excitations as a means for spatially
controlled room-temperature NV-center formation
Blue-Light-Emitting Color Centers in High-Quality Hexagonal Boron Nitride
Light emitters in wide band gap semiconductors are of great fundamental
interest and have potential as optically addressable qubits. Here we describe
the discovery of a new color center in high-quality hexagonal boron nitride
(h-BN) with a sharp emission line at 435 nm. The emitters are activated and
deactivated by electron beam irradiation and have spectral and temporal
characteristics consistent with atomic color centers weakly coupled to lattice
vibrations. The emitters are conspicuously absent from commercially available
h-BN and are only present in ultra-high-quality h-BN grown using a
high-pressure, high-temperature Ba-B-N flux/solvent, suggesting that these
emitters originate from impurities or related defects specific to this unique
synthetic route. Our results imply that the light emission is activated and
deactivated by electron beam manipulation of the charge state of an
impurity-defect complex
Alternative Stacking Sequences in Hexagonal Boron Nitride
The relative orientation of successive sheets, i.e. the stacking sequence, in
layered two-dimensional materials is central to the electronic, thermal, and
mechanical properties of the material. Often different stacking sequences have
comparable cohesive energy, leading to alternative stable crystal structures.
Here we theoretically and experimentally explore different stacking sequences
in the van der Waals bonded material hexagonal boron nitride (h-BN). We examine
the total energy, electronic bandgap, and dielectric response tensor for five
distinct high symmetry stacking sequences for both bulk and bilayer forms of
h-BN. Two sequences, the generally assumed AA' sequence and the relatively
unknown (for h-BN) AB (Bernal) sequence, are predicted to have comparably low
energy. We present a scalable modified chemical vapor deposition method that
produces large flakes of virtually pure AB stacked h-BN; this new material
complements the generally available AA' stacked h-BN
Symmetric Versus Nonsymmetric Structure of the Phosphorus Vacancy on InP(110)
The atomic and electronic structure of positively charged P vacancies on
InP(110) surfaces is determined by combining scanning tunneling microscopy,
photoelectron spectroscopy, and density-functional theory calculations. The
vacancy exhibits a nonsymmetric rebonded atomic configuration with a charge
transfer level 0.75+-0.1 eV above the valence band maximum. The scanning
tunneling microscopy (STM) images show only a time average of two degenerate
geometries, due to a thermal flip motion between the mirror configurations.
This leads to an apparently symmetric STM image, although the ground state
atomic structure is nonsymmetric.Comment: 5 pages including 3 figures. related publications can be found at
http://www.fhi-berlin.mpg.de/th/paper.htm
Wigs, disguises and child's play : solidarity in teacher education
It is generally acknowledged that much contemporary education takes place within a dominant audit culture, in which accountability becomes a powerful driver of educational practices. In this culture both pupils and teachers risk being configured as a means to an assessment and target-driven end: pupils are schooled within a particular paradigm of education. The article discusses some ethical issues raised by such schooling, particularly the tensions arising for teachers, and by implication, teacher educators who prepare and support teachers for work in situations where vocational aims and beliefs may be in in conflict with instrumentalist aims. The article offers De Certeau’s concept of ‘la perruque’ to suggest an opening to playful engagement for human ends in education, as a way of contending with and managing the tensions generated. I use the concept to recover a concept of solidarity for teacher educators and teachers to enable ethical teaching in difficult times
Carbon-assisted chemical vapor deposition of hexagonal boron nitride
We show that in a low-pressure chemical vapor deposition (CVD) system, the residual oxygen and/or air play a crucial role in the mechanism of the growth of hexagonal boron nitride (h-BN) films on Ni foil 'enclosures'. Hexagonal-BN films grow on the Ni foil surface via the formation of an intermediate boric-oxide (BOx) phase followed by a thermal reduction of the BOx by a carbon source (either amorphous carbon powder or methane), leading to the formation of single-and bi-layer h-N. Low energy electron microscopy (LEEM) and diffraction (LEED) were used to map the number of layers over large areas; Raman spectroscopy, time-of-flight secondary ion mass spectrometry (ToF-SIMS), x-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM) were used to characterize the structure and physical quality of the ultra-thin h-BN film. The growth procedure reported here leads to a better understanding and control of the synthesis of ultra-thin h-BN films
Mapping Local Charge Recombination Heterogeneity by Multidimensional Nanospectroscopic Imaging
As materials functionality becomes more dependent on local physical and electronic properties,
the importance of optically probing matter with true nanoscale spatial resolution has increased.
In this work, we mapped the influence of local trap states within individual nanowires on carrier
recombination with deeply subwavelength resolution. This is achieved using multidimensional
nanospectroscopic imaging based on a nano-optical device. Placed at the end of a scan probe,
the device delivers optimal near-field properties, including highly efficient far-field to near-field
coupling, ultralarge field enhancement, nearly background-free imaging, independence from
sample requirements, and broadband operation. We performed ~40-nanometer–resolution
hyperspectral imaging of indium phosphide nanowires via excitation and collection through
the probes, revealing optoelectronic structure along individual nanowires that is not accessible
with other methods
- …
