179 research outputs found
Can we improve the prediction of hip fracture by assessing bone structure using shape and appearance modelling?
Copyright 2013 Elsevier B.V., All rights reserved.Peer reviewedPreprin
Asymptotics of LQG fusion coefficients
The fusion coefficients from SO(3) to SO(4) play a key role in the definition
of spin foam models for the dynamics in Loop Quantum Gravity. In this paper we
give a simple analytic formula of the EPRL fusion coefficients. We study the
large spin asymptotics and show that they map SO(3) semiclassical intertwiners
into semiclassical intertwiners. This non-trivial
property opens the possibility for an analysis of the semiclassical behavior of
the model.Comment: 14 pages, minor change
Significant morphological change in osteoarthritic hips identified over 6-12 months using Statistical Shape Modelling
Acknowledgements We are grateful to all the study participants. We thank Lana Gibson and Jennifer Scott for their expertise with the iDXA scanner as well as iDXA precision data. Funding source This study was supported by an award (Ref: WHMSB_AU068/071) from the Translational Medicine Research Collaboration – a consortium made up of the Universities of Aberdeen, Dundee, Edinburgh and Glasgow, the four associated NHS Health Boards (Grampian, Tayside, Lothian and Greater Glasgow & Clyde), Scottish Enterprise and initially Wyeth, now Pfizer. The funder had no involvement in the collection, analysis and interpretation of data; in the writing of the manuscript; or in the decision to submit the manuscript for publication. Dr J.S. Gregory was the holder of an MRC New Investigator award (Ref: G0901242).Peer reviewedPostprin
Observables in 3d spinfoam quantum gravity with fermions
We study expectation values of observables in three-dimensional spinfoam
quantum gravity coupled to Dirac fermions. We revisit the model introduced by
one of the authors and extend it to the case of massless fermionic fields. We
introduce observables, analyse their symmetries and the corresponding proper
gauge fixing. The Berezin integral over the fermionic fields is performed and
the fermionic observables are expanded in open paths and closed loops
associated to pure quantum gravity observables. We obtain the vertex amplitudes
for gauge-invariant observables, while the expectation values of gauge-variant
observables, such as the fermion propagator, are given by the evaluation of
particular spin networks.Comment: 32 pages, many diagrams, uses psfrag
Spinning Loop Black Holes
In this paper we construct four Kerr-like spacetimes starting from the loop
black hole Schwarzschild solutions (LBH) and applying the Newman-Janis
transformation. In previous papers the Schwarzschild LBH was obtained replacing
the Ashtekar connection with holonomies on a particular graph in a
minisuperspace approximation which describes the black hole interior. Starting
from this solution, we use a Newman-Janis transformation and we specialize to
two different and natural complexifications inspired from the complexifications
of the Schwarzschild and Reissner-Nordstrom metrics. We show explicitly that
the space-times obtained in this way are singularity free and thus there are no
naked singularities. We show that the transformation move, if any, the
causality violating regions of the Kerr metric far from r=0. We study the
space-time structure with particular attention to the horizons shape. We
conclude the paper with a discussion on a regular Reissner-Nordstrom black hole
derived from the Schwarzschild LBH and then applying again the Newmann-Janis
transformation.Comment: 18 pages, 18 figure
Cosmological evolution as squeezing: a toy model for group field cosmology
We present a simple model of quantum cosmology based on the group field theory (GFT) approach to quantum gravity. The model is formulated on a subspace of the GFT Fock space for the quanta of geometry, with a fixed volume per quantum. In this Hilbert space, cosmological expansion corresponds to the generation of new quanta. Our main insight is that the evolution of a flat Friedmann–Lemaître–Robertson–Walker universe with a massless scalar field can be described on this Hilbert space as squeezing, familiar from quantum optics. As in GFT cosmology, we find that the three-volume satisfies an effective Friedmann equation similar to the one of loop quantum cosmology, connecting the classical contracting and expanding solutions by a quantum bounce. The only free parameter in the model is identified with Newton’s constant. We also comment on the possible topological interpretation of our squeezed states. This paper can serve as an introduction into the main ideas of GFT cosmology without requiring the full GFT formalism; our results can also motivate new developments in GFT and its cosmological application
Canonical quantization of non-commutative holonomies in 2+1 loop quantum gravity
In this work we investigate the canonical quantization of 2+1 gravity with
cosmological constant in the canonical framework of loop quantum
gravity. The unconstrained phase space of gravity in 2+1 dimensions is
coordinatized by an SU(2) connection and the canonically conjugate triad
field . A natural regularization of the constraints of 2+1 gravity can be
defined in terms of the holonomies of . As a first step
towards the quantization of these constraints we study the canonical
quantization of the holonomy of the connection on the
kinematical Hilbert space of loop quantum gravity. The holonomy operator
associated to a given path acts non trivially on spin network links that are
transversal to the path (a crossing). We provide an explicit construction of
the quantum holonomy operator. In particular, we exhibit a close relationship
between the action of the quantum holonomy at a crossing and Kauffman's
q-deformed crossing identity. The crucial difference is that (being an operator
acting on the kinematical Hilbert space of LQG) the result is completely
described in terms of standard SU(2) spin network states (in contrast to
q-deformed spin networks in Kauffman's identity). We discuss the possible
implications of our result.Comment: 19 pages, references added. Published versio
Second-order amplitudes in loop quantum gravity
We explore some second-order amplitudes in loop quantum gravity. In
particular, we compute some second-order contributions to diagonal components
of the graviton propagator in the large distance limit, using the old version
of the Barrett-Crane vertex amplitude. We illustrate the geometry associated to
these terms. We find some peculiar phenomena in the large distance behavior of
these amplitudes, related with the geometry of the generalized triangulations
dual to the Feynman graphs of the corresponding group field theory. In
particular, we point out a possible further difficulty with the old
Barrett-Crane vertex: it appears to lead to flatness instead of Ricci-flatness,
at least in some situations. The observation raises the question whether this
difficulty remains with the new version of the vertex.Comment: 22 pages, 18 figure
Graviton propagator in loop quantum gravity
We compute some components of the graviton propagator in loop quantum
gravity, using the spinfoam formalism, up to some second order terms in the
expansion parameter.Comment: 41 pages, 6 figure
Physical boundary state for the quantum tetrahedron
We consider stability under evolution as a criterion to select a physical
boundary state for the spinfoam formalism. As an example, we apply it to the
simplest spinfoam defined by a single quantum tetrahedron and solve the
associated eigenvalue problem at leading order in the large spin limit. We show
that this fixes uniquely the free parameters entering the boundary state.
Remarkably, the state obtained this way gives a correlation between edges which
runs at leading order with the inverse distance between the edges, in agreement
with the linearized continuum theory. Finally, we give an argument why this
correlator represents the propagation of a pure gauge, consistently with the
absence of physical degrees of freedom in 3d general relativity.Comment: 20 pages, 6 figure
- …
