3,425 research outputs found

    Imaging geometry through dynamics: the observable representation

    Full text link
    For many stochastic processes there is an underlying coordinate space, VV, with the process moving from point to point in VV or on variables (such as spin configurations) defined with respect to VV. There is a matrix of transition probabilities (whether between points in VV or between variables defined on VV) and we focus on its ``slow'' eigenvectors, those with eigenvalues closest to that of the stationary eigenvector. These eigenvectors are the ``observables,'' and they can be used to recover geometrical features of VV

    Organized Current Patterns in Disordered Conductors

    Full text link
    We present a general theory of current deviations in straight current carrying wires with random imperfections, which quantitatively explains the recent observations of organized patterns of magnetic field corrugations above micron-scale evaporated wires. These patterns originate from the most efficient electron scattering by Fourier components of the wire imperfections with wavefronts along the ±45\pm 45^{\circ} direction. We show that long range effects of surface or bulk corrugations are suppressed for narrow wires or wires having an electrically anisotropic resistivity

    Designing potentials by sculpturing wires

    Full text link
    Magnetic trapping potentials for atoms on atom chips are determined by the current flow in the chip wires. By modifying the shape of the conductor we can realize specialized current flow patterns and therefore micro-design the trapping potentials. We have demonstrated this by nano-machining an atom chip using the focused ion beam technique. We built a trap, a barrier and using a BEC as a probe we showed that by polishing the conductor edge the potential roughness on the selected wire can be reduced. Furthermore we give different other designs and discuss the creation of a 1D magnetic lattice on an atom chip.Comment: 6 pages, 8 figure

    Disorder Potentials near Lithographically Fabricated Atom Chips

    Full text link
    We show that previously observed large disorder potentials in magnetic microtraps for neutral atoms are reduced by about two orders of magnitude when using atom chips with lithographically fabricated high quality gold layers. Using one dimensional Bose-Einstein condensates, we probe the remaining magnetic field variations at surface distances down to a few microns. Measurements on a 100 um wide wire imply that residual variations of the current flow result from local properties of the wire.Comment: submitted on September 24th, 200

    Long-Range Order in Electronic Transport through Disordered Metal Films

    Full text link
    Ultracold atom magnetic field microscopy enables the probing of current flow patterns in planar structures with unprecedented sensitivity. In polycrystalline metal (gold) films we observe long-range correlations forming organized patterns oriented at +/- 45 deg relative to the mean current flow, even at room temperature and at length scales orders of magnitude larger than the diffusion length or the grain size. The preference to form patterns at these angles is a direct consequence of universal scattering properties at defects. The observed amplitude of the current direction fluctuations scales inversely to that expected from the relative thickness variations, the grain size and the defect concentration, all determined independently by standard methods. This indicates that ultracold atom magnetometry enables new insight into the interplay between disorder and transport

    Uniform generation in trace monoids

    Full text link
    We consider the problem of random uniform generation of traces (the elements of a free partially commutative monoid) in light of the uniform measure on the boundary at infinity of the associated monoid. We obtain a product decomposition of the uniform measure at infinity if the trace monoid has several irreducible components-a case where other notions such as Parry measures, are not defined. Random generation algorithms are then examined.Comment: Full version of the paper in MFCS 2015 with the same titl

    The RNA Helicase DDX6 Controls Cellular Plasticity by Modulating P-Body Homeostasis

    Get PDF
    Post-transcriptional mechanisms have the potential to influence complex changes in gene expression, yet their role in cell fate transitions remains largely unexplored. Here, we show that suppression of the RNA helicase DDX6 endows human and mouse primed embryonic stem cells (ESCs) with a differentiation-resistant, “hyper-pluripotent” state, which readily reprograms to a naive state resembling the preimplantation embryo. We further demonstrate that DDX6 plays a key role in adult progenitors where it controls the balance between self-renewal and differentiation in a context-dependent manner. Mechanistically, DDX6 mediates the translational suppression of target mRNAs in P-bodies. Upon loss of DDX6 activity, P-bodies dissolve and release mRNAs encoding fate-instructive transcription and chromatin factors that re-enter the ribosome pool. Increased translation of these targets impacts cell fate by rewiring the enhancer, heterochromatin, and DNA methylation landscapes of undifferentiated cell types. Collectively, our data establish a link between P-body homeostasis, chromatin organization, and stem cell potency

    Befragung zum Status-Quo der Tierhaltung bei 287 süddeutschen Bio-Betrieben (Demeter- und Bioland)[Inquiry to the status quo of livestock husbandry in organic farms in southern germany]

    Get PDF
    Fazit: Die gegenüber früheren Untersuchungen gestiegenen Bestandsgrößen weisen darauf hin, daß sich im ökologischen Landbau ein ähnlicher Strukturwandel wie in der konventionellen Landwirtschaft vollzieht (Wachstum und Spezialisierung). Die Auswertung zeigt ferner, daß die Betriebe zunehmend bemüht sind, bereits jetzt den zukünftigen Haltungsvorschriften der EU-Verordnung zu entsprechen. Fast alle Betriebe führen Weidegang durch und trotz der relativ geringen Bestandsgröße haben die meisten Betriebe bereits Laufställe; Auslaufmöglichkeiten fallen demgegenüber allerdings noch ab

    Single-crossover dynamics: finite versus infinite populations

    Full text link
    Populations evolving under the joint influence of recombination and resampling (traditionally known as genetic drift) are investigated. First, we summarise and adapt a deterministic approach, as valid for infinite populations, which assumes continuous time and single crossover events. The corresponding nonlinear system of differential equations permits a closed solution, both in terms of the type frequencies and via linkage disequilibria of all orders. To include stochastic effects, we then consider the corresponding finite-population model, the Moran model with single crossovers, and examine it both analytically and by means of simulations. Particular emphasis is on the connection with the deterministic solution. If there is only recombination and every pair of recombined offspring replaces their pair of parents (i.e., there is no resampling), then the {\em expected} type frequencies in the finite population, of arbitrary size, equal the type frequencies in the infinite population. If resampling is included, the stochastic process converges, in the infinite-population limit, to the deterministic dynamics, which turns out to be a good approximation already for populations of moderate size.Comment: 21 pages, 4 figure

    The monoclonal antibody nBT062 conjugated to maytansinoids has potent and selective cytotoxicity against CD138 positive multiple myeloma cells _in vitro_ and _in vivo_

    Get PDF
    CD138 (Syndecan1) is highly expressed on multiple myeloma (MM) cells. In this study, we examined the anti-MM effect of murine/human chimeric CD138-specific monoclonal antibody (mAb) nBT062 conjugated with highly cytotoxic maytansinoid derivatives _in vitro_ and _in vivo_. These agents significantly inhibited growth of CD138-positive MM cell lines and primary tumor cells from MM patients, without cytotoxicity against peripheral blood mononuclear cells from healthy volunteers. In MM cells, they induced G2/M cell cycle arrest followed by apoptosis associated with cleavage of PARP and caspase-3, -8 and -9. Non-conjugated nBT062 completely blocked cytotoxicity induced by nBT062-maytansinoid conjugate, confirming that binding is required for inducing cytotoxicity. Moreover, nBT062-maytansinoid conjugates blocked adhesion of MM cells to bone marrow stromal cells (BMSCs). Co-culture of MM cells with BMSCs, which protects against dexamethasone-induced death, had no impact on the cytotoxicity of the immunoconjugates. Importantly, nBT062-SPDB-DM4 and nBT062-SPP-DM1 significantly inhibited MM tumor growth _in vivo_ in both human multiple myeloma xenograft mouse models and in SCID-human bone grafts (SCID-hu mouse model). These studies provide the preclinical framework supporting evaluation of nBT062-maytansinoid derivatives in clinical trials to improve patient outcome in MM
    corecore