3,425 research outputs found
Imaging geometry through dynamics: the observable representation
For many stochastic processes there is an underlying coordinate space, ,
with the process moving from point to point in or on variables (such as
spin configurations) defined with respect to . There is a matrix of
transition probabilities (whether between points in or between variables
defined on ) and we focus on its ``slow'' eigenvectors, those with
eigenvalues closest to that of the stationary eigenvector. These eigenvectors
are the ``observables,'' and they can be used to recover geometrical features
of
Organized Current Patterns in Disordered Conductors
We present a general theory of current deviations in straight current
carrying wires with random imperfections, which quantitatively explains the
recent observations of organized patterns of magnetic field corrugations above
micron-scale evaporated wires. These patterns originate from the most efficient
electron scattering by Fourier components of the wire imperfections with
wavefronts along the direction. We show that long range
effects of surface or bulk corrugations are suppressed for narrow wires or
wires having an electrically anisotropic resistivity
Designing potentials by sculpturing wires
Magnetic trapping potentials for atoms on atom chips are determined by the
current flow in the chip wires. By modifying the shape of the conductor we can
realize specialized current flow patterns and therefore micro-design the
trapping potentials. We have demonstrated this by nano-machining an atom chip
using the focused ion beam technique. We built a trap, a barrier and using a
BEC as a probe we showed that by polishing the conductor edge the potential
roughness on the selected wire can be reduced. Furthermore we give different
other designs and discuss the creation of a 1D magnetic lattice on an atom
chip.Comment: 6 pages, 8 figure
Disorder Potentials near Lithographically Fabricated Atom Chips
We show that previously observed large disorder potentials in magnetic
microtraps for neutral atoms are reduced by about two orders of magnitude when
using atom chips with lithographically fabricated high quality gold layers.
Using one dimensional Bose-Einstein condensates, we probe the remaining
magnetic field variations at surface distances down to a few microns.
Measurements on a 100 um wide wire imply that residual variations of the
current flow result from local properties of the wire.Comment: submitted on September 24th, 200
Long-Range Order in Electronic Transport through Disordered Metal Films
Ultracold atom magnetic field microscopy enables the probing of current flow
patterns in planar structures with unprecedented sensitivity. In
polycrystalline metal (gold) films we observe long-range correlations forming
organized patterns oriented at +/- 45 deg relative to the mean current flow,
even at room temperature and at length scales orders of magnitude larger than
the diffusion length or the grain size. The preference to form patterns at
these angles is a direct consequence of universal scattering properties at
defects. The observed amplitude of the current direction fluctuations scales
inversely to that expected from the relative thickness variations, the grain
size and the defect concentration, all determined independently by standard
methods. This indicates that ultracold atom magnetometry enables new insight
into the interplay between disorder and transport
Uniform generation in trace monoids
We consider the problem of random uniform generation of traces (the elements
of a free partially commutative monoid) in light of the uniform measure on the
boundary at infinity of the associated monoid. We obtain a product
decomposition of the uniform measure at infinity if the trace monoid has
several irreducible components-a case where other notions such as Parry
measures, are not defined. Random generation algorithms are then examined.Comment: Full version of the paper in MFCS 2015 with the same titl
The RNA Helicase DDX6 Controls Cellular Plasticity by Modulating P-Body Homeostasis
Post-transcriptional mechanisms have the potential to influence complex changes in gene expression, yet their role in cell fate transitions remains largely unexplored. Here, we show that suppression of the RNA helicase DDX6 endows human and mouse primed embryonic stem cells (ESCs) with a differentiation-resistant, “hyper-pluripotent” state, which readily reprograms to a naive state resembling the preimplantation embryo. We further demonstrate that DDX6 plays a key role in adult progenitors where it controls the balance between self-renewal and differentiation in a context-dependent manner. Mechanistically, DDX6 mediates the translational suppression of target mRNAs in P-bodies. Upon loss of DDX6 activity, P-bodies dissolve and release mRNAs encoding fate-instructive transcription and chromatin factors that re-enter the ribosome pool. Increased translation of these targets impacts cell fate by rewiring the enhancer, heterochromatin, and DNA methylation landscapes of undifferentiated cell types. Collectively, our data establish a link between P-body homeostasis, chromatin organization, and stem cell potency
Befragung zum Status-Quo der Tierhaltung bei 287 süddeutschen Bio-Betrieben (Demeter- und Bioland)[Inquiry to the status quo of livestock husbandry in organic farms in southern germany]
Fazit:
Die gegenüber früheren Untersuchungen gestiegenen Bestandsgrößen weisen darauf hin, daß sich im ökologischen Landbau ein ähnlicher Strukturwandel wie in der konventionellen Landwirtschaft vollzieht (Wachstum und Spezialisierung). Die Auswertung zeigt ferner, daß die Betriebe zunehmend bemüht sind, bereits jetzt den zukünftigen Haltungsvorschriften der EU-Verordnung zu entsprechen. Fast alle Betriebe führen Weidegang durch und trotz der relativ geringen Bestandsgröße haben die meisten Betriebe bereits Laufställe; Auslaufmöglichkeiten fallen demgegenüber allerdings noch ab
Single-crossover dynamics: finite versus infinite populations
Populations evolving under the joint influence of recombination and
resampling (traditionally known as genetic drift) are investigated. First, we
summarise and adapt a deterministic approach, as valid for infinite
populations, which assumes continuous time and single crossover events. The
corresponding nonlinear system of differential equations permits a closed
solution, both in terms of the type frequencies and via linkage disequilibria
of all orders. To include stochastic effects, we then consider the
corresponding finite-population model, the Moran model with single crossovers,
and examine it both analytically and by means of simulations. Particular
emphasis is on the connection with the deterministic solution. If there is only
recombination and every pair of recombined offspring replaces their pair of
parents (i.e., there is no resampling), then the {\em expected} type
frequencies in the finite population, of arbitrary size, equal the type
frequencies in the infinite population. If resampling is included, the
stochastic process converges, in the infinite-population limit, to the
deterministic dynamics, which turns out to be a good approximation already for
populations of moderate size.Comment: 21 pages, 4 figure
The monoclonal antibody nBT062 conjugated to maytansinoids has potent and selective cytotoxicity against CD138 positive multiple myeloma cells _in vitro_ and _in vivo_
CD138 (Syndecan1) is highly expressed on multiple myeloma (MM) cells. In this study, we examined the anti-MM effect of murine/human chimeric CD138-specific monoclonal antibody (mAb) nBT062 conjugated with highly cytotoxic maytansinoid derivatives _in vitro_ and _in vivo_. These agents significantly inhibited growth of CD138-positive MM cell lines and primary tumor cells from MM patients, without cytotoxicity against peripheral blood mononuclear cells from healthy volunteers. In MM cells, they induced G2/M cell cycle arrest followed by apoptosis associated with cleavage of PARP and caspase-3, -8 and -9. Non-conjugated nBT062 completely blocked cytotoxicity induced by nBT062-maytansinoid conjugate, confirming that binding is required for inducing cytotoxicity. Moreover, nBT062-maytansinoid conjugates blocked adhesion of MM cells to bone marrow stromal cells (BMSCs). Co-culture of MM cells with BMSCs, which protects against dexamethasone-induced death, had no impact on the cytotoxicity of the immunoconjugates. Importantly, nBT062-SPDB-DM4 and nBT062-SPP-DM1 significantly inhibited MM tumor growth _in vivo_ in both human multiple myeloma xenograft mouse models and in SCID-human bone grafts (SCID-hu mouse model). These studies provide the preclinical framework supporting evaluation of nBT062-maytansinoid derivatives in clinical trials to improve patient outcome in MM
- …
