Populations evolving under the joint influence of recombination and
resampling (traditionally known as genetic drift) are investigated. First, we
summarise and adapt a deterministic approach, as valid for infinite
populations, which assumes continuous time and single crossover events. The
corresponding nonlinear system of differential equations permits a closed
solution, both in terms of the type frequencies and via linkage disequilibria
of all orders. To include stochastic effects, we then consider the
corresponding finite-population model, the Moran model with single crossovers,
and examine it both analytically and by means of simulations. Particular
emphasis is on the connection with the deterministic solution. If there is only
recombination and every pair of recombined offspring replaces their pair of
parents (i.e., there is no resampling), then the {\em expected} type
frequencies in the finite population, of arbitrary size, equal the type
frequencies in the infinite population. If resampling is included, the
stochastic process converges, in the infinite-population limit, to the
deterministic dynamics, which turns out to be a good approximation already for
populations of moderate size.Comment: 21 pages, 4 figure