2,719 research outputs found

    The dependence of test-mass thermal noises on beam shape in gravitational-wave interferometers

    Get PDF
    In second-generation, ground-based interferometric gravitational-wave detectors such as Advanced LIGO, the dominant noise at frequencies f40f \sim 40 Hz to 200\sim 200 Hz is expected to be due to thermal fluctuations in the mirrors' substrates and coatings which induce random fluctuations in the shape of the mirror face. The laser-light beam averages over these fluctuations; the larger the beam and the flatter its light-power distribution, the better the averaging and the lower the resulting thermal noise. In semi-infinite mirrors, scaling laws for the influence of beam shape on the four dominant types of thermal noise (coating Brownian, coating thermoelastic, substrate Brownian, and substrate thermoelastic) have been suggested by various researchers and derived with varying degrees of rigour. Because these scaling laws are important tools for current research on optimizing the beam shape, it is important to firm up our understanding of them. This paper (1) gives a summary of the prior work and of gaps in the prior analyses, (2) gives a unified and rigorous derivation of all four scaling laws, and (3) explores, relying on work by J. Agresti, deviations from the scaling laws due to finite mirror size.Comment: 25 pages, 10 figures, submitted to Class. Quantum Gra

    Laser processing optimization for large-area perovskite solar modules

    Get PDF
    The industrial exploitation of perovskite solar cell technology is still hampered by the lack of repeatable and high-throughput fabrication processes for large-area modules. The joint efforts of the scientific community allowed to demonstrate high-performing small area solar cells; however, retaining such results over large area modules is not trivial. Indeed, the development of deposition methods over large substrates is required together with additional laser processes for the realization of the monolithically integrated cells and their interconnections. In this work, we develop an efficient perovskite solar module based on 2D material engineered structure by optimizing the laser ablation steps (namely P1, P2, P3) required for shaping the module layout in series connected sub-cells. We investigate the impact of the P2 and P3 laser processes, carried out by employing a UV pulsed laser (pulse width = 10 ns; lambda = 355 nm), over the final module performance. In particular, a P2 process for removing 2D material-based cell stack from interconnection area among adjacent cells is optimized. Moreover, the impact of the P3 process used to isolate adjacent sub-cells after gold realization over the module performance once laminated in panel configuration is elucidated. The developed fabrication process ensures high-performance repeatability over a large module number by demonstrating the use of laser processing in industrial production

    X-Ray Diffraction and Reflectance Spectroscopy of Murchison Powders (CM2) After Thermal Analysis Under Reducing Conditions to Final Temperatures Between 300 and 1300c

    Get PDF
    The asteroids Ryugu and Bennu have spectral characteristics in common with CI/CM type carbonaceous chondrites and are target bodies for JAXAs Hayabusa2 and NASAs OSIRIS-Rex missions, respectively. Analog studies, based primarily on the Murchison CM2 chondrite, provide a pathway to separate spectral properties resulting space weathering from those inherent to parent-body, mineralogy, chemistry, and processes. Ryugu shares spectral properties with thermally metamorphosed and partly dehydrated CI/CM chondrites. We have undertaken a multidisciplinary study of the thermal decomposition of Murchison powder samples as an analog to metamorphic process that may have occurred on Ryugu. Bulk analyses include thermal And evolved gas analysis, X-ray diffraction (XRD), and VIS-NIR and Mssbauer spectroscopy; micro- to nanoscale analyses included scanning and transmission electron microscopy and electron probe micro analysisWe report here XRD and VIS-NIR analyses of pre- and post-heated Murchison powders, and in a companion paper report results from multiple electron beam techniques

    Markov bases and subbases for bounded contingency tables

    Full text link
    In this paper we study the computation of Markov bases for contingency tables whose cell entries have an upper bound. In general a Markov basis for unbounded contingency table under a certain model differs from a Markov basis for bounded tables. Rapallo, (2007) applied Lawrence lifting to compute a Markov basis for contingency tables whose cell entries are bounded. However, in the process, one has to compute the universal Gr\"obner basis of the ideal associated with the design matrix for a model which is, in general, larger than any reduced Gr\"obner basis. Thus, this is also infeasible in small- and medium-sized problems. In this paper we focus on bounded two-way contingency tables under independence model and show that if these bounds on cells are positive, i.e., they are not structural zeros, the set of basic moves of all 2×22 \times 2 minors connects all tables with given margins. We end this paper with an open problem that if we know the given margins are positive, we want to find the necessary and sufficient condition on the set of structural zeros so that the set of basic moves of all 2×22 \times 2 minors connects all incomplete contingency tables with given margins.Comment: 22 pages. It will appear in the Annals of the Institution of Statistical Mathematic

    Two-dimensional materials in perovskite solar cells

    Get PDF

    A staged screening of registered drugs highlights remyelinating drug candidates for clinical trials

    Get PDF
    There is no treatment for the myelin loss in multiple sclerosis, ultimately resulting in the axonal degeneration that leads to the progressive phase of the disease. We established a multi-tiered platform for the sequential screening of drugs that could be repurposed as remyelinating agents. We screened a library of 2,000 compounds (mainly Food and Drug Administration (FDA)-approved compounds and natural products) for cellular metabolic activity on mouse oligodendrocyte precursors (OPC), identifying 42 molecules with significant stimulating effects. We then characterized the effects of these compounds on OPC proliferation and differentiation in mouse glial cultures, and on myelination and remyelination in organotypic cultures. Three molecules, edaravone, 5-methyl-7-methoxyisoflavone and lovastatin, gave positive results in all screening tiers. We validated the results by retesting independent stocks of the compounds, analyzing their purity, and performing dose-response curves. To identify the chemical features that may be modified to enhance the compounds' activity, we tested chemical analogs and identified, for edaravone, the functional groups that may be essential for its activity. Among the selected remyelinating candidates, edaravone appears to be of strong interest, also considering that this drug has been approved as a neuroprotective agent for acute ischemic stroke and amyotrophic lateral sclerosis in Japan

    Cost-effectiveness of asthma control: an economic appraisal of the GOAL study

    Get PDF
    <i>Background</i>: The Gaining Optimal Asthma ControL (GOAL) study has shown the superiority of a combination of salmeterol/fluticasone propionate (SFC) compared with fluticasone propionate alone (FP) in terms of improving guideline defined asthma control. <i>Methods</i>: Clinical and economic data were taken from the GOAL study, supplemented with data on health related quality of life, in order to estimate the cost per quality adjusted life year (QALY) results for each of three strata (previously corticosteroid-free, low- and moderate-dose corticosteroid users). A series of statistical models of trial outcomes was used to construct cost effectiveness estimates across the strata of the multinational GOAL study including adjustment to the UK experience. Uncertainty was handled using the non-parametric bootstrap. Cost-effectiveness was compared with other treatments for chronic conditions. <i>Result</i>: Salmeterol/fluticasone propionate improved the proportion of patients achieving totally and well-controlled weeks resulting in a similar QALY gain across the three strata of GOAL. Additional costs of treatment were greatest in stratum 1 and least in stratum 3, with some of the costs offset by reduced health care resource use. Cost-effectiveness by stratum was £7600 (95% CI: £4800–10 700) per QALY gained for stratum 3; £11 000 (£8600–14 600) per QALY gained for stratum 2; and £13 700 (£11 000–18 300) per QALY gained for stratum 1. <i>Conclusion</i>: The GOAL study previously demonstrated the improvement in total control associated with the use of SFC compared with FP alone. This study suggests that this improvement in control is associated with cost-per-QALY figures that compare favourably with other uses of scarce health care resources

    Synergic use of two-dimensional materials to tailor interfaces in large area perovskite modules

    Get PDF
    In the field of halide perovskite solar cells (PSCs), interface engineering has been conceptualized and exploited as a powerful mean to improve solar cell performance, stability, and scalability. In this regard, here we propose the use of a multi two-dimensional (2D) materials as intra and inter layers in a mesoscopic PSCs. By combining graphene into both compact and mesoporous TiO2, Ti3C2Tx MXenes into the perovskite absorbing layer and functionalized-MoS2 at the interface between perovskite and the hole transporting layer, we boost the efficiency of PSCs (i.e., +10%) compared to the 2D materials-free PSCs. The optimized 2D materials-based structure has been successfully extended from lab-scale cell dimensions to large area module on 121 cm2 substrates (11 x11 cm2) till to 210 cm2 substrates (14.5 x14.5 cm2) with active area efficiency of 17.2% and 14.7%, respectively. The remarkable results are supported by a systematic statistical analysis, testifying the effectiveness of 2D materials interface engineering also on large area devices, extending the 2D materials-perovskite photovoltaic technology to the industrial exploitation
    corecore