5,463 research outputs found

    The 125 GeV boson: A composite scalar?

    Full text link
    Assuming that the 125 GeV particle observed at the LHC is a composite scalar and responsible for the electroweak gauge symmetry breaking, we consider the possibility that the bound state is generated by a non-Abelian gauge theory with dynamically generated gauge boson masses and a specific chiral symmetry breaking dynamics motivated by confinement. The scalar mass is computed with the use of the Bethe-Salpeter equation and its normalization condition as a function of the SU(N) group and the respective fermionic representation. If the fermions that form the composite state are in the fundamental representation of the SU(N) group, we can generate such light boson only for one specific number of fermions for each group. In the case of small groups, like SU(2) to SU(5), and two fermions in the adjoint representation we find that is quite improbable to generate such light composite scalar.Comment: 24 pages, 5 figures, discussion extended, references added; version to appear in Phys. Rev.

    A model for the wind direction signature in the stokes smissin sector from the ocean surfaces at microwave frequencies

    Get PDF
    This paper presents a model of the Stokes emission vector from the ocean surface. The ocean surface is described as an ensemble of facets with Cox and Munk's (1954) Gram-Charlier slope distribution. The study discusses the impact of different up-wind and cross-wind rms slopes, skewness, peakedness, foam cover models and atmospheric effects on the azimuthal variation of the Stokes vector, as well as the limitations of the model. Simulation results compare favorably, both in mean value and azimuthal dependence, with SSM/I data at 53/spl deg/ incidence angle and with JPL's WINDRAD measurements at incidence angles from 30/spl deg/ to 65/spl deg/, and at wind speeds from 2.5 to 11 m/s.Peer ReviewedPostprint (published version

    Inflation in asymptotically safe f(R) theory

    Full text link
    We discuss the existence of inflationary solutions in a class of renormalization group improved polynomial f(R) theories, which have been studied recently in the context of the asymptotic safety scenario for quantum gravity. These theories seem to possess a nontrivial ultraviolet fixed point, where the dimensionful couplings scale according to their canonical dimensionality. Assuming that the cutoff is proportional to the Hubble parameter, we obtain modified Friedmann equations which admit both power law and exponential solutions. We establish that for sufficiently high order polynomial the solutions are reliable, in the sense that considering still higher order polynomials is very unlikely to change the solution.Comment: Presented at 14th Conference on Recent Developments in Gravity: NEB 14, Ioannina, Greece, 8-11 Jun 201

    Board of Registration for Professional Engineers and Land Surveyors

    Get PDF

    Board of Registration for Geologists and Geophysicists

    Get PDF

    Board of Registration for Geologists and Geophysicists

    Get PDF

    Board of Registration for Professional Engineers and Land Surveyors

    Get PDF
    • …
    corecore