157 research outputs found

    A unified framework based on the binding polynomial for characterizing biological systems by isothermal titration calorimetry

    Get PDF
    Isothermal titration calorimetry (ITC) has become the gold-standard technique for studying binding processes due to its high precision and sensitivity, as well as its capability for the simultaneous determination of the association equilibrium constant, the binding enthalpy and the binding stoichiometry. The current widespread use of ITC for biological systems has been facilitated by technical advances and the availability of commercial calorimeters. However, the complexity of data analysis for non-standard models is one of the most significant drawbacks in ITC. Many models for studying macromolecular interactions can be found in the literature, but it looks like each biological system requires specific modeling and data analysis approaches. The aim of this article is to solve this lack of unity and provide a unified methodological framework for studying binding interactions by ITC that can be applied to any experimental system. The apparent complexity of this methodology, based on the binding polynomial, is overcome by its easy generalization to complex systems

    Allosteric Inhibitors of the NS3 Protease from the Hepatitis C Virus

    Get PDF
    The nonstructural protein 3 (NS3) from the hepatitis C virus processes the non-structural region of the viral precursor polyprotein in infected hepatic cells. The NS3 protease activity has been considered a target for drug development since its identification two decades ago. Although specific inhibitors have been approved for clinical therapy very recently, resistance-associated mutations have already been reported for those drugs, compromising their long-term efficacy. Therefore, there is an urgent need for new anti-HCV agents with low susceptibility to resistance-associated mutations. Regarding NS3 protease, two strategies have been followed: competitive inhibitors blocking the active site and allosteric inhibitors blocking the binding of the accessory viral protein NS4A. In this work we exploit the intrinsic Zn+2-regulated plasticity of the protease to identify a new type of allosteric inhibitors. In the absence of Zn+2, the NS3 protease adopts a partially-folded inactive conformation. We found ligands binding to the Zn+2-free NS3 protease, trap the inactive protein, and block the viral life cycle. The efficacy of these compounds has been confirmed in replicon cell assays. Importantly, direct calorimetric assays reveal a low impact of known resistance-associated mutations, and enzymatic assays provide a direct evidence of their inhibitory activity. They constitute new low molecular-weight scaffolds for further optimization and provide several advantages: 1) new inhibition mechanism simultaneously blocking substrate and cofactor interactions in a non-competitive fashion, appropriate for combination therapy; 2) low impact of known resistance-associated mutations; 3) inhibition of NS4A binding, thus blocking its several effects on NS3 protease

    Deconvolution analysis for classifying gastric adenocarcinoma patients based on differential scanning calorimetry serum thermograms

    Get PDF
    Recently, differential scanning calorimetry (DSC) has been acknowledged as a novel tool for diagnosing and monitoring several diseases. This highly sensitive technique has been traditionally used to study thermally induced protein folding/unfolding transitions. In previous research papers, DSC profiles from blood samples of patients were analyzed and they exhibited marked differences in the thermal denaturation profile. Thus, we investigated the use of this novel technology in blood serum samples from 25 healthy subjects and 30 patients with gastric adenocarcinoma (GAC) at different stages of tumor development with a new multiparametric approach. The analysis of the calorimetric profiles of blood serum from GAC patients allowed us to discriminate three stages of cancer development (I to III) from those of healthy individuals. After a multiparametric analysis, a classification of blood serum DSC parameters from patients with GAC is proposed. Certain parameters exhibited significant differences (P < 0.05) and allowed the discrimination of healthy subjects/patients from patients at different tumor stages. The results of this work validate DSC as a novel technique for GAC patient classification and staging, and offer new graphical tools and value ranges for the acquired parameters in order to discriminate healthy from diseased subjects with increased disease burden

    Rescuing compound bioactivity in a secondary cell-based screening by using gamma-cyclodextrin as a molecular carrier

    Get PDF
    In vitro primary screening for identifying bioactive compounds (inhibitors, activators or pharmacological chaperones) against a protein target results in the discovery of lead com- pounds that must be tested in cell-based efficacy secondary screenings. Very often lead com- pounds do not succeed because of an apparent low potency in cell assays, despite an excellent performance in primary screening. Primary and secondary screenings differ significantly accord- ing to the conditions and challenges the compounds must overcome in order to interact with their intended target. Cellular internalization and intracellular metabolism are some of the difficulties the compounds must confront and different strategies can be envisaged for minimizing that prob- lem. Using a novel screening procedure we have identified 15 compounds inhibiting the hepatitis C NS3 protease in an allosteric fashion. After characterizing biophysically the interaction with the target, some of the compounds were not able to inhibit viral replication in cell assays. In order to overcome this obstacle and potentially improve cellular internalization three of these compounds were complexed with gamma-cyclodextrin. Two of them showed a five- and 16-fold activity increase, compared to their activity when delivered as free compounds in solution (while gamma-cyclodextrin did not show antiviral activity by itself ). The most remarkable result came from a third compound that showed no antiviral activity in cell assays when delivered free in solu- tion, but its gamma-cyclodextrin complex exhibited a 50% effective concentration of 5 micromoles. Thus, the antiviral activity of these compounds can be significantly improved, even completely rescued, using gamma-cyclodextrin as carrier molecule

    Thermal liquid biopsy (TLB) focused on benign and premalignant pancreatic cyst diagnosis

    Get PDF
    Background: Current efforts in the identification of new biomarkers are directed towards an accurate differentiation between benign and premalignant cysts. Thermal Liquid Biopsy (TLB) has been previously applied to inflammatory and tumor diseases and could offer an interesting point of view in this type of pathology. Methods: In this work, twenty patients (12 males and 8 females, average ages 62) diagnosed with a pancreatic cyst benign (10) and premalignant (10) cyst lesions were recruited, and biological samples were obtained during the endoscopic ultrasonography procedure. Results: Proteomic content of cyst liquid samples was studied and several common proteins in the different groups were identified. TLB cyst liquid profiles reflected protein content. Also, TLB serum score was able to discriminate between healthy and cysts patients (71% sensitivity and 98% specificity) and between benign and premalignant cysts (75% sensitivity and 67% specificity). Conclusions: TLB analysis of plasmatic serum sample, a quick, simple and non-invasive technique that can be easily implemented, reports valuable information on the observed pancreatic lesion. These preliminary results set the basis for a larger study to refine TLB serum score and move closer to the clinical application of TLB providing useful information to the gastroenterologist during patient diagnosis

    A fixed point theorem for multifunctions and an application

    Full text link
    The main result is a fixed point theorem for compositions of chain faithful multifunctions (Corollary 2.3). The theorem is then applied to get sufficient conditions for the fixed point property of the product of two partially ordered sets.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45583/1/12_2005_Article_BF01195267.pd

    DD04107-Derived neuronal exocytosis inhibitor peptides: Evidences for synaptotagmin-1 as a putative target

    Get PDF
    The analgesic peptide DD04107 (Pal-EEMQRR-NH2) and its acetylated analogue inhibit a-calcitonin gene-related peptide (a-CGRP) exocytotic release from primary sensory neurons. Examining the crystal structure of the SNARE-Synaptotagmin-1(Syt1) complex, we hypothesized that these peptides could inhibit neuronal exocytosis by binding to Syt1, hampering at least partially its interaction with the SNARE complex. To address this hypothesis, we first interrogate the role of individual side-chains on the inhibition of a-CGRP release, finding that E1, M3, Q4 and R6 residues were crucial for activity. CD and NMR conformational analysis showed that linear peptides have tendency to adopt a-helical conformations, but the results with cyclic analogues indicated that this secondary structure is not needed for activity. Isothermal titration calorimetry (ITC) measurements demonstrate a direct interaction of some of these peptides with Syt1-C2B domain, but not with Syt7-C2B region, indicating selectivity. As expected for a compound able to inhibit a-CGRP release, cyclic peptide derivative Pal-E-cyclo[EMQK]R-NH2 showed potent in vivo analgesic activity, in a model of inflammatory pain. Molecular dynamics simulations provided a model consistent with KD values for the interaction of peptides with Syt1-C2B domain, and with their biological activity. Altogether, these results identify Syt1 as a potential new analgesic target. © 202

    Seleno-functionalization of quercetin improves the non-covalent inhibition of mpro and its antiviral activity in cells against sars-cov-2

    Get PDF
    The development of new antiviral drugs against SARS-CoV-2 is a valuable long-term strategy to protect the global population from the COVID-19 pandemic complementary to the vaccination. Considering this, the viral main protease (Mpro ) is among the most promising molecular targets in light of its importance during the viral replication cycle. The natural flavonoid quercetin 1 has been recently reported to be a potent Mpro inhibitor in vitro, and we explored the effect produced by the introduction of organoselenium functionalities in this scaffold. In particular, we report here a new synthetic method to prepare previously inaccessible C-8 seleno-quercetin derivatives. By screening a small library of flavonols and flavone derivatives, we observed that some compounds inhibit the protease activity in vitro. For the first time, we demonstrate that quercetin (1) and 8-(p-tolylselenyl)quercetin (2d) block SARS-CoV-2 replication in infected cells at non-toxic concentrations, with an IC50 of 192 µM and 8 µM, respectively. Based on docking experiments driven by experimental evidence, we propose a non-covalent mechanism for Mpro inhibition in which a hydrogen bond between the selenium atom and Gln189 residue in the catalytic pocket could explain the higher Mpro activity of 2d and, as a result, its better antiviral profile. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Characterization of the Interaction between the Cohesin Subunits Rad21 and SA1/2

    Get PDF
    The cohesin complex is responsible for the fidelity of chromosomal segregation during mitosis. It consists of four core subunits, namely Rad21/Mcd1/Scc1, Smc1, Smc3, and one of the yeast Scc3 orthologs SA1 or SA2. Sister chromatid cohesion is generated during DNA replication and maintained until the onset of anaphase. Among the many proposed models of the cohesin complex, the メcoreメ cohesin subunits Smc1, Smc3, and Rad21 are almost universally displayed as tripartite ring. However, other than its supportive role in the cohesin ring, little is known about the fourth core subunit SA1/SA2. To gain deeper insight into the function of SA1/SA2 in the cohesin complex, we have mapped the interactive regions of SA2 and Rad21 in vitro and ex vivo. Whereas SA2 interacts with Rad21 through a broad region (301ヨ750 aa), Rad21 binds to SA proteins through two SA-binding motifs on Rad21, namely N-terminal (NT) and middle part (MP) SA-binding motif, located At 60-81 aa of the N-terminus and 383ヨ392 aa of the MP of Rad21, respectively. The MP SA-binding motif is a 10 amino acid, a-helical motif. Deletion of these 10 amino acids or mutation of three conserved amino acids (L385, F389, and T390) in this ahelical motif significantly hinders Rad21 from physically interacting with SA1/2. Besides the MP SA-binding motif, the NT SAbinding motif is also important for SA1/2 interaction. Although mutations on both SA-binding motifs disrupt Rad21-SA1/2 interaction, they had no apparent effect on the Smc1-Smc3-Rad21 interaction. However, the Rad21-Rad21 dimerization was reduced by the mutations, indicating potential involvement of the two SA-binding motifs in the formation of the two-ring handcuff for chromosomal cohesion. Furthermore, mutant Rad21 proteins failed to significantly rescue precocious chromosome separation caused by depletion of endogenous Rad21 in mitotic cells, further indicating the physiological significance of the two SA-binding motifs of Rad21
    corecore