52 research outputs found

    The values and risks of an Intergovernmental Panel for One Health to strengthen pandemic prevention, preparedness, and response

    Get PDF
    The COVID-19 pandemic has shown the need for better global governance of pandemic prevention, preparedness, and response (PPR) and has emphasised the importance of organised knowledge production and uptake. In this Health Policy, we assess the potential values and risks of establishing an Intergovernmental Panel for One Health (IPOH). Similar to the Intergovernmental Panel on Climate Change, an IPOH would facilitate knowledge uptake in policy making via a multisectoral approach, and hence support the addressing of infectious disease emergence and re-emergence at the human-animal-environment interface. The potential benefits to pandemic PPR include a clear, unified, and authoritative voice from the scientific community, support to help donors and institutions to prioritise their investments, evidence-based policies for implementation, and guidance on defragmenting the global health system. Potential risks include a scope not encompassing all pandemic origins, unclear efficacy in fostering knowledge uptake by policy makers, potentially inadequate speed in facilitating response efforts, and coordination challenges among an already dense set of stakeholders. We recommend weighing these factors when designing institutional reforms for a more effective global health system

    Action on the social determinants for advancing health equity in the time of COVID-19: perspectives of actors engaged in a WHO Special Initiative

    Get PDF
    Since the 2008 publication of the reports of the Commission on Social Determinants of Health and its nine knowledge networks, substantial research has been undertaken to document and describe health inequities. The COVID-19 pandemic has underscored the need for a deeper understanding of, and broader action on, the social determinants of health. Building on this unique and critical opportunity, the World Health Organization is steering a multi-country Initiative to reduce health inequities through an action-learning process in ‘Pathfinder’ countries. The Initiative aims to develop replicable and reliable models and practices that can be adopted by WHO offices and UN staff to address the social determinants of health to advance health equity. This paper provides an overview of the Initiative by describing its broad theory of change and work undertaken in three regions and six Pathfinder countries in its first year-and-a-half. Participants engaged in the Initiative describe results of early country dialogues and promising entry points for implementation that involve model, network and capacity building. The insights communicated through this note from the field will be of interest for others aiming to advance health equity through taking action on the social determinants of health, in particular as regards structural determinants

    Phylogenetic congruence and ecological coherence in terrestrial Thaumarchaeota

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. Acknowledgements We would like to thank Dr Robert Griffith/CEH for providing DNA from soil samples and Dr Anthony Travis for his help with BioLinux. Sequencing was performed in NERC platform in Liverpool. CG-R was funded by a NERC fellowship NE/J019151/1. CQ was funded by a MRC fellowship (MR/M50161X/1) as part of the cloud infrastructure for microbial genomics consortium (MR/L015080/1).Peer reviewedPublisher PD

    Accelerated surgery versus standard care in hip fracture (HIP ATTACK): an international, randomised, controlled trial

    Get PDF

    How, When, and Where Relic DNA Affects Microbial Diversity

    No full text
    Extracellular or “relic” DNA is one of the largest pools of nucleic acids in the biosphere. Relic DNA can influence a number of important ecological and evolutionary processes, but it may also affect estimates of microbial abundance and diversity, which has implications for understanding environmental, engineered, and host-associated ecosystems. We developed models capturing the fundamental processes that regulate the size and composition of the relic DNA pools to identify scenarios leading to biased estimates of biodiversity. Our models predict that bias increases with relic DNA pool size, but only when the species abundance distributions (SADs) of relic and intact DNA are distinct from one another. We evaluated our model predictions by quantifying relic DNA and assessing its contribution to bacterial diversity using 16S rRNA gene sequences collected from different ecosystem types, including soil, sediment, water, and the mammalian gut. On average, relic DNA made up 33% of the total bacterial DNA pool but exceeded 80% in some samples. Despite its abundance, relic DNA had a minimal effect on estimates of taxonomic and phylogenetic diversity, even in ecosystems where processes such as the physical protection of relic DNA are common and predicted by our models to generate bias. Our findings are consistent with the expectation that relic DNA from different taxa degrades at a constant and equal rate, suggesting that it may not fundamentally alter estimates of microbial diversity.The ability to rapidly obtain millions of gene sequences and transcripts from a range of environments has greatly advanced understanding of the processes that regulate microbial communities. However, nucleic acids extracted from complex samples do not come only from viable microorganisms. Dead microorganisms can generate large pools of relic DNA that distort insight into the ecology and evolution of microbial systems. Here, we develop a conceptual and quantitative framework for understanding how relic DNA influences the structure of microbiomes. Our theoretical models and empirical results demonstrate that a large relic DNA pool does not automatically lead to biased estimates of microbial diversity. Rather, relic DNA effects emerge in combination with microscale processes that alter the commonness and rarity of sequences found in heterogeneous DNA pools
    • 

    corecore