2,005 research outputs found

    The infrared structure of e+ e- --> 3 jets at NNLO reloaded

    Full text link
    This paper gives detailed information on the structure of the infrared singularities for the process e+ e- --> 3 jets at next-to-next-to-leading order in perturbation theory. Particular emphasis is put on singularities associated to soft gluons. The knowledge of the singularity structure allows the construction of appropriate subtraction terms, which in turn can be implemented into a numerical Monte Carlo program.Comment: 59 pages, additional comments added, version to be publishe

    NNLO QCD corrections to event shape variables in electron positron annihilation

    Full text link
    Precision studies of QCD at electron-positron colliders are based on measurements of event shapes and jet rates. To match the high experimental accuracy, theoretical predictions to next-to-next-to-leading order (NNLO) in QCD are needed for a reliable interpretation of the data. We report the first calculation of NNLO corrections O(alpha_s^3) to three-jet production and related event shapes, and discuss their phenomenological impact.Comment: Contributed to 2007 Europhysics Conference on High Energy Physics, Manchester, England 19-25 July 200

    Antenna subtraction with massive fermions at NNLO: Double real initial-final configurations

    Full text link
    We derive the integrated forms of specific initial-final tree-level four-parton antenna functions involving a massless initial-state parton and a massive final-state fermion as hard radiators. These antennae are needed in the subtraction terms required to evaluate the double real corrections to ttˉt\bar{t} hadronic production at the NNLO level stemming from the partonic processes qqˉttˉqqˉq\bar{q}\to t\bar{t}q'\bar{q}' and ggttˉqqˉgg\to t\bar{t}q\bar{q}.Comment: 24 pages, 1 figure, 1 Mathematica file attache

    Resummation of heavy jet mass and comparison to LEP data

    Get PDF
    The heavy jet mass distribution in e+e- collisions is computed to next-to-next-to-next-to leading logarithmic (NNNLL) and next-to-next-to leading fixed order accuracy (NNLO). The singular terms predicted from the resummed distribution are confirmed by the fixed order distributions allowing a precise extraction of the unknown soft function coefficients. A number of quantitative and qualitative comparisons of heavy jet mass and the related thrust distribution are made. From fitting to ALEPH data, a value of alpha_s is extracted, alpha_s(m_Z)=0.1220 +/- 0.0031, which is larger than, but not in conflict with, the corresponding value for thrust. A weighted average of the two produces alpha_s(m_Z) = 0.1193 +/- 0.0027, consistent with the world average. A study of the non-perturbative corrections shows that the flat direction observed for thrust between alpha_s and a simple non-perturbative shape parameter is not lifted in combining with heavy jet mass. The Monte Carlo treatment of hadronization gives qualitatively different results for thrust and heavy jet mass, and we conclude that it cannot be trusted to add power corrections to the event shape distributions at this accuracy. Whether a more sophisticated effective field theory approach to power corrections can reconcile the thrust and heavy jet mass distributions remains an open question.Comment: 33 pages, 14 figures. v2 added effect of lower numerical cutoff with improved extraction of the soft function constants; power correction discussion clarified. v3 small typos correcte

    Hadronization effects in event shape moments

    Full text link
    We study the moments of hadronic event shapes in e+ee^+e^- annihilation within the context of next-to-next-to-leading order (NNLO) perturbative QCD predictions combined with non-perturbative power corrections in the dispersive model. This model is extended to match upon the NNLO perturbative prediction. The resulting theoretical expression has been compared to experimental data from JADE and OPAL, and a new value for αs(MZ)\alpha_s(M_Z) has been determined, as well as of the average coupling α0\alpha_0 in the non-perturbative region below μI=2\mu_I=2 GeV within the dispersive model: \alpha_s(M_Z)&=0.1153\pm0.0017(\mathrm{exp})\pm0.0023(\mathrm{th}),\alpha_0&=0.5132\pm0.0115(\mathrm{exp})\pm0.0381(\mathrm{th}), The precision of the αs(MZ)\alpha_s(M_Z) value has been improved in comparison to the previously available next-to-leading order analysis. We observe that the resulting power corrections are considerably larger than those estimated from hadronization models in multi-purpose event generator programs.Comment: 23 pages, 5 figures, 15 tables. Few minor changes. Version accepted for publication in European Physical Journal C

    W boson production at hadron colliders: the lepton charge asymmetry in NNLO QCD

    Full text link
    We consider the production of W bosons in hadron collisions, and the subsequent leptonic decay W->lnu_l. We study the asymmetry between the rapidity distributions of the charged leptons, and we present its computation up to the next-to-next-to-leading order (NNLO) in QCD perturbation theory. Our calculation includes the dependence on the lepton kinematical cuts that are necessarily applied to select W-> lnu_l events in actual experimental analyses at hadron colliders. We illustrate the main differences between the W and lepton charge asymmetry, and we discuss their physical origin and the effect of the QCD radiative corrections. We show detailed numerical results on the charge asymmetry in ppbar collisions at the Tevatron, and we discuss the comparison with some of the available data. Some illustrative results on the lepton charge asymmetry in pp collisions at LHC energies are presented.Comment: 37 pages, 21 figure

    Multisystem proteinopathy due to a homozygous p.Arg159His VCP mutation : a tale of the unexpected

    Get PDF
    ObjectiveTo assess the clinical, radiologic, myopathologic, and proteomic findings in a patient manifesting a multisystem proteinopathy due to a homozygous valosin-containing protein gene (VCP) mutation previously reported to be pathogenic in the heterozygous state.MethodsWe studied a 36-year-old male index patient and his father, both presenting with progressive limb-girdle weakness. Muscle involvement was assessed by MRI and muscle biopsies. We performed whole-exome sequencing and Sanger sequencing for segregation analysis of the identified p.Arg159His VCP mutation. To dissect biological disease signatures, we applied state-of-the-art quantitative proteomics on muscle tissue of the index case, his father, 3 additional patients with VCP-related myopathy, and 3 control individuals.ResultsThe index patient, homozygous for the known p.Arg159His mutation in VCP, manifested a typical VCP-related myopathy phenotype, although with a markedly high creatine kinase value and a relatively early disease onset, and Paget disease of bone. The father exhibited a myopathy phenotype and discrete parkinsonism, and multiple deceased family members on the maternal side of the pedigree displayed a dementia, parkinsonism, or myopathy phenotype. Bioinformatic analysis of quantitative proteomic data revealed the degenerative nature of the disease, with evidence suggesting selective failure of muscle regeneration and stress granule dyshomeostasis.ConclusionWe report a patient showing a multisystem proteinopathy due to a homozygous VCP mutation. The patient manifests a severe phenotype, yet fundamental disease characteristics are preserved. Proteomic findings provide further insights into VCP-related pathomechanisms

    Measurement of the strong coupling alpha_S from the three-jet rate in e+e- - annihilation using JADE data

    Get PDF
    We present a measurement of the strong coupling alpha_S using the three-jet rate measured with the Durham algorithm in e+e- -annihilation using data of the JADE experiment at centre-of-mass energies between 14 and 44 GeV. Recent theoretical improvements provide predictions of the three-jet rate in e+e- -annihilation at next-to-next-to-leading order. In this paper a measurement of the three-jet rate is used to determine the strong coupling alpha_s from a comparison to next-to-next-to-leading order predictions matched with next-to-leading logarithmic approximations and yields a value for the strong coupling alpha_S(MZ) = 0.1199+- 0.0010 (stat.) +- 0.0021 (exp.) +- 0.0054 (had.) +- 0.0007 (theo.) consistent with the world average.Comment: 27 pages, 8 figure

    Characterisation of red-giant stars in the public Kepler data

    Full text link
    The first public release of long-cadence stellar photometric data collected by the NASA Kepler mission has now been made available. In this paper we characterise the red-giant (G-K) stars in this large sample in terms of their solar-like oscillations. We use published methods and well-known scaling relations in the analysis. Just over 70% of the red giants in the sample show detectable solar-like oscillations, and from these oscillations we are able to estimate the fundamental properties of the stars. This asteroseismic analysis reveals different populations: low-luminosity H-shell burning red-giant branch stars, cool high-luminosity red giants on the red-giant branch and He-core burning clump and secondary-clump giants.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical Society Main Journa

    Solar-like oscillations in red giants observed with Kepler: comparison of global oscillation parameters from different methods

    Full text link
    The large number of stars for which uninterrupted high-precision photometric timeseries data are being collected with \textit{Kepler} and CoRoT initiated the development of automated methods to analyse the stochastically excited oscillations in main-sequence, subgiant and red-giant stars. Aims: We investigate the differences in results for global oscillation parameters of G and K red-giant stars due to different methods and definitions. We also investigate uncertainties originating from the stochastic nature of the oscillations. Methods: For this investigation we use Kepler data obtained during the first four months of operation. These data have been analysed by different groups using already published methods and the results are compared. We also performed simulations to investigate the uncertainty on the resulting parameters due to different realizations of the stochastic signal. Results: We obtain results for the frequency of maximum oscillation power (nu_max) and the mean large separation () from different methods for over one thousand red-giant stars. The results for these parameters agree within a few percent and seem therefore robust to the different analysis methods and definitions used here. The uncertainties for nu_max and due to differences in realization noise are not negligible and should be taken into account when using these results for stellar modelling.Comment: 11 pages, 9 Figures and 7 tables, accepted for publication in Astronomy and Astrophysic
    corecore