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Yang-ting Chien and Matthew D. Schwartz
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Harvard University

Cambridge, MA 02138, U.S.A.

Abstract

The heavy jet mass distribution in e+e− collisions is computed to next-to-next-to-
next-to leading logarithmic (N3LL) and next-to-next-to leading fixed order accuracy
(NNLO). The singular terms predicted from the resummed distribution are confirmed
by the fixed order distributions allowing a precise extraction of the unknown soft function
coefficients. A number of quantitative and qualitative comparisons of heavy jet mass and
the related thrust distribution are made. From fitting to ALEPH data, a value of αs

is extracted, αs(mZ) = 0.1220 ± 0.0031, which is larger than, but not in conflict with,
the corresponding value for thrust. A weighted average of the two produces αs(mZ) =
0.1193 ± 0.0027, consistent with the world average. A study of the non-perturbative
corrections shows that the flat direction observed for thrust between αs and a simple
non-perturbative shape parameter is not lifted in combining with heavy jet mass. The
Monte Carlo treatment of hadronization gives qualitatively different results for thrust
and heavy jet mass, and we conclude that it cannot be trusted to add power corrections
to the event shape distributions at this accuracy. Whether a more sophisticated effective
field theory approach to power corrections can reconcile the thrust and heavy jet mass
distributions remains an open question.

http://arxiv.org/abs/1005.1644v3


1 Introduction

Event shapes in e+e− collisions provide some of the best ways to test QCD and the standard
model. At high energies, where QCD is perturbative, event shapes lead to some of the world’s
most precise measurements of the strong coupling constant αs. Recently, a number of theoret-
ical advances have led to renewed interest in event shapes and the αs measurements. First, the
NNLO fixed order Feynman diagrams were calculated [1, 2, 3, 4]. This allowed the prediction
of all event shapes to order α3

s. Second, advances [5, 6, 7] in Soft-Collinear Effective Theory
(SCET) [8, 9, 10] have allowed resummation of the large logarithmic corrections to thrust to
N3LL accuracy [11]. Previous calculations were at NLO [12] and NLL [13]. Very recently,
a full effective field theory analysis of a single event shape, thrust, has been completed [14],
including additionally non-perturbative considerations. The resulting αs extraction is com-
petitive with the PDG world average [15], however it differs significantly from measurements
using lattice QCD and τ decays (see [16] for a review).

Although the αs measurement with thrust is extremely precise, there are many reasons to
study additional event shapes as well. The main advantage is that there may be systematic
effects in a single event shape pulling αs in a certain direction, which are not universal. In
fact, as observed in [17] from an NLL+NNLO analysis, there seem to be two classes of event
shapes, the first including thrust, the C-parameter and total jet broadening, while the second
includes heavy jet mass, wide jet broadening and the two-to-three jet transition parameter
y3. The values of αs extracted from the two classes at NLL+NNLO tend to have around a
5% systematic difference which the authors attribute to missing higher order corrections. In a
recent world average of αs [16], the thrust measurement using SCET was not included because
of a concern over precisely this kind of systematic uncertainty. In this paper, we correct that
concern with a N3LL calculation of an event shape from the second class, heavy jet mass.

In addition to being useful for measuring αs, the heavy jet mass distribution allows us to
explore other aspects of resummation. Indeed, there are few hadronic observables which have
been calculated this accurately and for which there is data. Heavy jet mass involves a soft
function which cannot be written in terms of only a single scale. These types of soft functions
promise to play an important role in resummation at hadron colliders and only beginning
to be explored [19, 20, 21]. We will discuss constraints on the soft function, and perform a
numerical study of the parts that are not known, similar to what was done in [11] and [22].

Hadronization is another issue which having a second event shape may help understand.
In the fit to αs with the thrust distribution [11], it was observed that a decrease in αs could be
compensated for with a single non-perturbative parameter with only a small effect on the χ2

of the fit. Having another observable for which the same non-perturbative parameters can be
fit can possibly remove this flat direction. The hadronization issue is also important for Monte
Carlo simulations. With a more accurate theoretical calculations, we can explore whether the
approximations in pythia [23] allow for an adequate description of thrust and heavy jet mass
simultaneously.

As a brief outline of our findings, we begin in Section 2 with an overview of the SCET
distributions. The hemisphere soft function is studied and singular terms in the heavy jet
mass distribution are compared to the fixed order calculation in Section 3. We found a
mild inconsistency with the analytic results from SCET and the numerical calculations of the

1



NLO and NNLO distributions. After completing the original study, we were able to resolve
this inconsistency, which was due to Monte Carlo convergence problems, by taking a very
low numerical infrared cutoff, as discussed in a note added at the end of this paper. In
Section 4 we fit for αs. The fit for heavy jet mass to the lep data from aleph [24] leads to
αs(mZ) = 0.1220± 0.0031. This value is higher than the value from thrust using exactly the
same technique, αs(mZ) = 0.1175±0.0026. Assuming 100% correlation gives an average value
of αs(mZ) = 0.1193 ± 0.0027 which is very close to the recent average in [16]. We also find
that convergence of the perturbation series for heavy jet mass with resummation is, like for
thrust, significantly better than the convergence of the fixed order calculation. In Section 5, a
comparison of the data to pythia shows that while pythia agrees with the thrust data almost
perfectly, it has trouble matching the heavy jet mass distribution. Moreover, the hadronization
corrections in pythia move the curve in the wrong direction for heavy jet mass. Concluding
that the Monte Carlo hadronization model is incompatible with the high precision theoretical
calculation, we explore non-perturbative corrections in SCET with a simple shape function.
We find that to the order we are working, this simple shape function cannot simultaneously
describe the thrust and heavy jet mass distributions. We provide an expanded summary,
discussion and comparison to previous results in Section 6.

2 Thrust and Heavy Jet Mass in SCET

Thrust and heavy jet mass are defined as follows. One first finds the thrust axis, through

T = max
n

∑
i |pi · n|∑

i |pi|
, (1)

where the sum is over all momentum 3-vectors pi in the event, and the maximum is over all
unit 3-vectors n. We use τ = 1− T to measure thrust. Once the thrust axis is known, it can
be used to split the event into two hemispheres. We define P µ

L and P µ
R to be the four momenta

of the sum of all the radiation going into each hemisphere, and ML =
√
P 2
L and MR =

√
P 2
R

to be the hemisphere masses. Heavy jet mass ρ is defined as the larger of the two hemisphere
masses squared, normalized to the the center of mass energy Q,

ρ ≡ 1

Q2
max(M2

L,M
2
R) . (2)

When ρ is small, τ is also small, both hemisphere masses are small, and the event appears
to have two back-to-back pencil-like jets. In this threshold limit, the thrust axis aligns with
the jet axis and Q2τ approaches the sum of the two hemisphere masses squared M2

L +M2
R =

Q2τ +O(τ 2).
It follows that both thrust, up to power corrections, and heavy jet mass can be written as

integrals over the doubly differential hemisphere mass distribution:

dσ

dτ
= Q2

∫
d2σ

dM2
LdM

2
R

δ(Q2τ −M2
L −M2

R) , (3)
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dσ

dρ
= Q2

∫
d2σ

dM2
LdM

2
R

[
δ(Q2ρ−M2

L)θ(M
2
L −M2

R) + δ(Q2ρ−M2
R)θ(M

2
R −M2

L)
]
. (4)

In SCET, the doubly differential hemisphere mass distribution is calculable in the threshold
limit. The appropriate factorization theorem in SCET was first derived in [5] for the related
process of tt̄ production. This theorem was then shown to allow for the calculation of event
shapes in [6], where matched and resummed thrust and heavy jet mass distributions in SCET
were first presented. Previously, resummation of heavy jet mass was only possible at NLL
accuracy [13]. The first event shape resummed to N3LL was thrust, in [11]. Monte Carlo
based hadronization corrections were included in [25] to produce a strong model-independent
gluino mass bound. Recently, power corrections for thrust were studied within the effective
field theory approach in [14].

The factorization theorem allows us to write the hemisphere mass distribution as

1

σ0

d2σ2

dM2
LdM

2
R

= H(Q2, µ)

∫
dkLdkR J(M2

L −QkL, µ) J(M
2
R −QkR, µ)S(kL, kR, µ) . (5)

The subscript on σ2 is a reminder that this expression holds in the two-jet region. Here,
H(Q2, µ) is the hard function. It is calculated in matching SCET to QCD and contains
information about the modes of QCD that are not in SCET. J(p2, µ) is a jet function. It is
derived in a matching calculation from a theory with soft and collinear modes to a theory
with just soft modes. The hard function was calculated in [26] and the jet functions in [7].
Finally, S(kL, kR, µ) is the hemisphere soft function which is derived from integrating out the
remaining soft modes.

The doubly differential hemisphere mass distribution, Eq. (5), is observable, and therefore
must be independent of renormalization group scale µ. Demanding µ-independence leads
to a renormalization group equation which is easiest to express in Laplace space, where the
convolutions turn into products. The Laplace transform is defined by

f̃(νL, νR) =

∫
dM2

LdM
2
Re

−νLM
2

Le−νRM2

Rf(M2
L,M

2
R) (6)

which can be applied to the differential cross section and to the jet and soft functions separately.
We generally express the Laplace transformed distributions as functions of L1 = ln(µνLe

γE)
and L2 = ln(µνRe

γE ). Since the entire µ-dependence of the hard and jet functions is known,
the µ-dependence of the soft function is completely fixed by renormalization group invariance
(see [11] for more details). The result is that the hemisphere soft function itself factorizes into
the form [5, 6, 27, 22]

s̃(L1, L2, µ) = s̃µ(L1, µ)s̃µ(L2, µ)s̃f(L1 − L2) , (7)

where all the µ-dependence is contained in the function s̃µ(L, µ) which is known to N3LL
accuracy. Since L1 − L2 = ln(νL/νR), the function s̃f(L1 − L2) is µ-independent. We discuss
the soft function more in the next section.

Putting together the hard and jet functions with the soft function written in this way
produces an analytic expression for the doubly differential jet mass distribution. For thrust,
the result is [11]
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1

σ0
Rτ

2(τ) =
1

σ0

∫ τ

0

dτ ′
dσ2

dτ ′

= exp [4S(µh, µj) + 4S(µs, µj)− 2AH(µh, µs) + 4AJ(µj, µs)]

(
Q2

µ2
h

)
−2AΓ(µh,µj)

×H(Q2, µh)

[
j̃
(
ln

µsQ

µ2
j

+ ∂η, µj

)]2
s̃T (∂η, µs)

[(
τQ

µs

)η
e−γEη

Γ(η + 1)

]
, (8)

with η = 4AΓ(µj, µs) and the thrust soft function s̃T (L, µ) is defined by

s̃T (L, µ) = s̃(L, L, µ) = [s̃µ(L, µ)]
2s̃f(0) . (9)

The definitions of the RG kernels AΓ(ν, µ) and S(ν, µ) as well as the fixed order hard and jet
functions, H(Q2, µ) and j̃(L, µ) and their anomalous dimensions can be found in [11]. Note
that only one value of the unknown function s̃f(L) is required for thrust.

For heavy jet mass, the distribution is similar

1

σ0
Rρ

2(ρ) =
1

σ0

∫ ρ

0

dρ′
dσ2

dρ′

= exp [4S(µh, µj) + 4S(µs, µj)− 2AH(µh, µs) + 4AJ(µj, µs)]

(
Q2

µ2
h

)
−2AΓ(µh,µj)

×H(Q2, µh)j̃
(
ln

µsQ

µ2
j

+ ∂η1 , µj

)
j̃
(
ln

µsQ

µ2
j

+ ∂η2 , µj

)
s̃µ(∂η1 , µs)s̃µ(∂η2 , µs)

(
ρQ

µs

)η1+η2

× s̃f (∂η1 − ∂η2)
e−γEη1

Γ(η1 + 1)

e−γEη2

Γ(η2 + 1)
, (10)

where η1 = η2 = 2AΓ(µj, µs). In contrast to thrust, for heavy jet mass the full functional form
of s̃f(L) is needed. For N3LL precision, we need to know the hemisphere soft function, and
hence s̃f(L) to two-loop order (NLO). Actually, to this order, we only need one projection
of the hemisphere soft function. For three-loop matching (NNLO), we need an additional
projection. These projections will be discussed in the next section.

One interesting feature of the hemisphere mass distribution is that the soft interference
effects in s̃f (L) are only relevant at α2

s, which is appropriate for N3LL resummation. Up
to NNLL accuracy, the doubly differential distribution is simply the product of the mass
distributions in the two hemispheres. Explicitly,

R(M2
L,M

2
R) =

∫ M2

L

0

dM2
L
′

∫ M2

R

0

dM2
R
′

d2σ

dM2
L
′dM2

R
′
= K(M2

L)K(M2
R) , (11)

where

K(M2) = exp [2S(µh, µj) + 2S(µs, µj)−AH(µh, µs) + 2AJ(µj, µs)]

(
Q2

µ2
h

)
−AΓ(µh,µj)
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×
√

H(Q2, µh)s̃f(0) j̃
(
ln

µsQ

µ2
j

+ ∂η, µj

)
s̃µ(∂η, µs)

(
M2

µsQ

)η
e−γEη

Γ(η + 1)
, (12)

and η = 2AΓ(µj, µs). Since, for NNLL resummation, the hard and jet functions are only
needed to O(αs), the square-roots above simply mean take one half of the αs pieces. The fact
that the distribution splits up in this way was observed at NLL level in [6], and is essential to
the traditional NLL resummation [13]. This simplified factorization suggests that it may be
possible to calculate observables involving many more jets with NNLL resummation without
having to disentangle soft interference effects. Note that this factorization does not guarantee
that large logs of M2

L/M
2
R can be resummed. However, it is possible that the calculation of

observables with only one scale, such as the sum of many jet masses, or a maximal jet mass,
will simplify with SCET.

3 Hemisphere Soft Function and Comparison to Fixed

Order

The hemisphere soft function has been studied briefly in [5, 6, 27] and more thoroughly in [22].
It is a function of two scales, kL and kR as well as the renormalization group scale µ. If nµ

L

is the direction of the left hemisphere and kµ
L is the sum of the momenta of all the soft

radiation entering this hemisphere, then kL is the component of kµ
L backwards to nµ

L. That
is kL = (kL · nL). kR is defined analogously. The soft function can be factorized into a
perturbative, partonic part, and non-perturbative contribution which has support of order
ΛQCD. For now we deal only with the perturbative part, discussing non-perturbative effects
in Section 5.

As we have noted, the soft function itself factorizes.

s̃(L1, L2, µ) = s̃µ(L1, µ)s̃µ(L2, µ)s̃f(L1 − L2) (13)

where s̃(L1, L2, µ) is the Laplace transform of S(kL, kR, µ), as in Eq. (6), and L1 = ln(µνLe
γE),

L2 = ln(µνRe
γE). The function s̃µ(L, µ) is completely fixed by RG invariance in terms of the

hard and jet anomalous dimensions. It can be calculated in perturbation theory by demanding
Eq. (10) be independent of µ. This gives

s̃µ(L, µ) = exp
[ (αs

4π

) (
−L2Γ0 + LγS

0

)
+
(αs

4π

)2(2

3
L3β0Γ0 + L2(−Γ1 − β0γ

S
0 ) + L(γS

1 )

)

+
(αs

4π

)3(
−2

3
L4β2

0Γ0 +
2

3
L3(β1Γ0 + 2β0Γ1 + 2β2

0γ
S
0 ) + L2(−Γ2 − β1γ

S
0 − 2β0γ

S
1 ) + L(γS

2 )

)

+ · · ·
]
. (14)

The µ-independent part s̃f (L) must satisfy a number of constraints, as discussed in [22].
First of all, since the soft function is symmetric in the two hemispheres, s̃f(L) must be an

even function of L. Second of all, we know the function to order αs by explicit calculation.
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Writing

s̃f (L) = 1 +
(αs

4π

)
s̃f 1(L) +

(αs

4π

)2
s̃f 2(L) + · · · , (15)

the one-loop result is that
s̃f 1(L) = −CFπ

2 . (16)

The authors of [22] also observed that s̃f(L) is constrained by the non-Abelian exponentiation
theorem. Non-Abelian exponentiation implies constraints on powers of logarithms of µ in
the full soft function. These constraints are satisfied by the explicit solution, since s̃µ(L, µ)
is an exponential. The theorem also restricts the Cn

F color structure in the soft function to
be completely determined by the one-loop result, Eq. (16). Beyond this, however, s̃f(L) is
unconstrained. It may even have more general dependence on L than logarithms. To determine
s̃f (L), we must calculate the soft function perturbatively. The one-loop calculation has been
done but the two-loop calculation, which is required for N3LL resummation, has not.

A simple alternative to calculating s̃f(L) at NNLO is to extract projections of s̃f(L) from
numerical comparisons to event shape calculations in full QCD. For example, thrust is only
sensitive to s̃f(0). Writing

s̃f (0) = 1 +
(αs

4π

)
cS1 +

(αs

4π

)2
cS2 + · · · , (17)

and comparing to Eq. (16), we see that cS1 = −CFπ
2. The two-loop constant was determined

numerically in [11] with the use of the event 2 program [28]. The result is

cS2 = (58± 2)C2
F + (−60± 1)CFCA + (43± 1)CFTFnf (Becher and Schwartz) (18)

This is in conflict with the prediction from non-Abelian exponentiation, which requires the
C2

F factor be 1
2
π4C2

F = 48.7C2
F . The two-loop constant was also determined in [22], using the

same technique but imposing non-Abelian exponentiation. They found

cS2 =
π4

2
C2

F + (−59 ± 2)CFCA + (44± 3)CFTFnf (Hoang and Kluth) (19)

The two results agree, except for the C2
F term. Indeed, the C2

F term seems to indicate a
disagreement between the numerical results of the event 2 program and the prediction from
non-Abelian exponentiation. Since the uncertainty in Eq (18) is too small to explain this
disagreement, it is reasonable also to expect the other color structures to be off. We should
therefore allow for a systematic uncertainty on these fits in addition to what is presented,
which is essentially a statistical uncertainty associated with the fit. We discuss this more
below.

Event shapes other than thrust are sensitive to the form of s̃f(L), not just s̃f (0). This can
be seen, for example, by the form of the heavy jet mass distribution in Eq. (10). For N3LL
resummation, the fixed order expansion is required to α2

s. The contribution at this order
involving s̃f(L) requires at most s̃f 2(L), with the jet and hard functions at their tree-level
values. Thus, the required projection of the s̃f(L) for heavy jet mass is

cS2ρ = s̃f 2(∂η1 − ∂η2)
e−γEη1

Γ(η1 + 1)

e−γEη2

Γ(η2 + 1)

∣∣∣∣
η1=η2=0

=
1

π

∫ π

0

s̃f 2(iL)dL . (20)
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n f

CF

CA

0.0 0.1 0.2 0.3 0.4

-60

-40

-20

0

20

ρ

1
σ0

∆
[
ρdσ
dρ

]

total

Figure 1: A comparison of the full fixed-order calculations and expanded SCET at NLO.
Shown is the difference 1

σ0

ρ∆dσ
dρ

= ρ(B(ρ) −DB(ρ)), where B(ρ) is the full NLO B-function,

calculated with event 2 andDB(ρ) is the singular part, calculated with SCET. The differences
are separated by color structure, with the sum also shown. The kink at ρ = 1

3
is the maximum

heavy jet mass for a 3-particle final state. (See also Figure 11.)

The integral representation of cS2ρ is suggestive of a deeper relation between heavy jet mass
and the hemisphere mass distribution, however we do not have a physical explanation of why
this particular moment appears. If s̃f(L) is a polynomial, this moment is very simple. For
example, if we assume

s̃f (L) = 1 +
(αs

4π

)
cS1 +

(αs

4π

)2 [
cS2 + cS2LL

2 + cS2QL
4
]
, (21)

then

cS2ρ = cS2 − cS2L
π2

3
+ cS2Q

π4

5
. (22)

At NLO, the singular part of the heavy jet mass distribution only depends on s̃f (L) through
cS2ρ. Thus, we can fit cS2ρ numerically the same way cS2 is fit with thrust.

To determine cS2ρ we use the same technique used in [11] for thrust, and in [22] for a one-
parameter family of event shapes. The basic idea is that the singular part of the heavy jet
mass distribution is known analytically, through SCET. The difference between the exact NLO
heavy jet mass distribution and this singular part is finite and can be integrated numerically.
This integral is then the total cross section at NLO minus the integral of the singular part
which is calculable analytically and depends on the constants cS2 for thrust and cS2ρ for heavy
jet mass.
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n f

CA

CF

0.001 0.002 0.003 0.004 0.005 0.006
-60

-40

-20

0

20

40

60

80

cS2ρ

ρmin

Figure 2: Extraction of the two-loop constants in the soft function. The points correspond
to the value of a lower bound ρmin applied to the fixed-order calculation. The lines are
interpolations among the points from ρmin = 0.002 to ρmin = 0.005 extrapolated to ρ = 0 to
extract the constants.(See also Figure 12.)

In more detail, the exact heavy jet mass distribution can be expanded as a series in αs

1

σ0

dσ

dρ
=
(αs

2π

)
A(ρ) +

(αs

2π

)2
B(ρ) +

(αs

2π

)3
C(ρ) + · · · . (23)

Each term in this series is singular at ρ = 0. The singular parts can be written as a sum of
distributions

1

σ0

dσ

dρ
= δ(ρ)Dδ +

(αs

2π

)
[DA(ρ)]+ +

(αs

2π

)2
[DB(ρ)]+ +

(αs

2π

)3
[DC(ρ)]+ + · · · . (24)

The functions Dδ, DA(ρ), DB(ρ), and DC(ρ) are calculable in SCET and we give them in
Appendix C. Up to order α2

s, the only dependence on the unknown soft function coefficient
cS2ρ is in Dδ, thus the shape of the singular part of the NLO distribution is known completely.
The corresponding exact distributions in perturbative QCD have been calculated for ρ > 0
analytically for the A function, and numerically for the B and C functions. Since SCET
produces the entire singular part of the distributions, the combination

1

σ0
∆

[
ρ
dσ

dρ

]
= ρB(ρ)− ρDB(ρ) , (25)

should vanish at ρ = 0. We show this difference separated by color structure in Figure 1. The
B functions are calculated using the Monte Carlo program event 2 [28] with 1010 events.
Curiously, while the CF and CA color structures do not seem to go to 0 as ρ → 0, their sum
does.
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n2
f

10−3

σ0
ρdσ
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− log ρ− log ρ− log ρ

Figure 3: Comparison of the full NNLO heavy jet mass distribution C(ρ) (dashed black
histograms) [29] and the singular terms DC(ρ) (blue curves). The light-red areas are an
estimate of the statistical uncertainty. The uncertainties on cS2 and cS2L, in Eq (33), are not
visible. The disagreement at very small ρ is due to the infrared cut-off of y0 = 10−5 for
the NNLO calculation. It is expected that the agreement would improve if this cutoff were
lowered, as can be seen in the analogous thrust plot in [11]. (See also Figure 13.)

With these difference functions, it is straightforward to extract cS2ρ as in [11] and [22].
Although the difference ρB(ρ)− ρDB(ρ) is regular at ρ = 0, the two functions are separately
divergent. Since DB(ρ) is only known numerically, the difference is numerically unstable at
small ρ. To do the cS2ρ extraction, we use the same procedure as in [11] and impose an lower
bound and take the limit that the bound is removed. The extracted values as a function of this
lower bound ρmin are shown in Figure 2. We then fit a line in the region 0.002 ≤ ρmin ≤ 0.005
and extrapolate to ρmin = 0. The result is

cS2ρ = (58± 2)C2
F + (−41± 2)CFCA + (50± 1)CFTFnf . (26)

Note that the CF and CA curves have problems at small ρmin, in agreement with what is seen
in Figure 1. Since the approach is linear up to around ρmin ∼ 0.002, it is likely that this
divergence is an unphysical systematic problem with the Monte Carlo, and not due to low
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Figure 4: The difference, 1
σ0
ρ∆dσ

dρ
= ρ(C(ρ)−DC(ρ)), between the full NNLO heavy jet mass

distribution and the singular terms. The light-red areas are an estimate of the statistical
uncertainty, from [29]. The blue band is the uncertainty due to cS2 and cS2L, in Eq (33). These
curves should all go to 0 at ρ = 0. The C(ρ) distributions are all calculated with an infrared
cutoff of y0 = 10−5. (See Figure 14 for the same figure with y0 = 10−7.)

statistics or a discrepancy with theory. 1 As with cS2 , non-Abelian exponentiation implies that
the C2

F term should be 1
2
π4 ≈ 48.7. Thus, our uncertainty of cS2ρ from the extrapolation is

probably too small and we will therefore inflate the errors by a factor of 5. (See also Eq. (50)
and Figures 11 and 12 for an update.)

To calculate the heavy jet mass distribution to N3LL+NNLO accuracy, we must match to
the NNLO fixed order distribution. This requires the singular parts of heavy jet mass to α3

s,
that is, the function DC(ρ) in Eq. (24). To derive this, we do not need the finite part of the
soft function at α3

s, s̃f 3(L), since this piece only contributes to the α3
s part of Dδ, which is not

required for matching. We do, however, need another projection of the α2
s soft function, of

the form

cS2ζ = (∂η1 + ∂η2)s̃f 2(∂η1 − ∂η2)
e−γEη1

Γ(η1 + 1)

e−γEη2

Γ(η2 + 1)

∣∣∣∣
η1=η2=0

(27)

1We thank A. Hoang for a discussion of this point.
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=
2

π

∫ π

0

s̃f 2(iL) ln

[
2 cos(

L

2
)

]
dL . (28)

Again, we have no physical explanation of the intriguing integral definition in the second line.
This projection also simplifies with a polynomial soft function. For example, with Eq (21)

cS2ζ = 4ζ3c
S
2L + (−8π2ζ3 + 48ζ5)c

S
2Q . (29)

The prediction from SCET for DC(ρ) with its explicit dependence only on cS2ρ and cS2ζ is given
in Appendix C. There are only three color structures which depend on cS2ζ at all.

In order to extract the L dependence of s̃f 2(L), we could attempt to fit cS2ζ with the shapes
of the NNLO distributions. An alternative, as pursued by Hoang and Kluth in [22], is to use
the other event shapes beyond thrust and heavy jet mass at NLO. These authors considered
a weighted sum of the jet masses, τα = 2

1+α
(αM2

L + M2
R)/Q

2. This form leads to a singular
distribution which depends on s̃f 2(lnα), hence combining event shapes with different α can
probe the entire function s̃f 2(L). Their fits show good agreement with the form

s̃f(L) = 1 +
(αs

4π

)
cS1 +

(αs

4π

)2 [
cS2 + cS2LL

2
]
, (30)

which they have argued is likely to be the exact 2-loop soft function. We will therefore assume
this form of the soft function as well, in order to proceed with the N3LL+NNLO αs fits.

2

With this soft function and the thrust fit values in Eq. (18), our fit for cS2ρ translates into
a fit for cS2L (cf. Eq.(22) with cS2Q = 0) The result is

cS2L = (0± 2)C2
F + (−5.8± 1.5)CFCA + (−2.2± 1)CFTFnf . (31)

Using a similar technique, but imposing the constraint from non-Abelian exponentiation,
Hoang and Kluth found results consistent with ours

cS2L = (0)C2
F + (−6.5± 2)CFCA + (1.3± 2)CFTFnf (Hoang and Kluth) (32)

Note that for cS2L, the C
2
F coefficient comes out to be consistent with the prediction from non-

Abelian exponentiation. Since cS2L comes from the difference between the values extracted from
thrust and the values extracted from heavy jet mass, the systematic problem with event 2

may be cancelling in the difference. Thus, we will inflate our uncertainties on cS2L by only a
factor of 2.

In summary, for the rest of this paper, we will take

s̃f(L) = 1 +
(αs

4π

)
cS1 +

(αs

4π

)2 [
cS2 + cS2LL

2
]

(33)

cS2 =
π4

2
C2

F + (−60± 10)CFCA + (43± 5)CFTFnf (34)

2 There is a subtlety about these τα event shapes because of non-global logarithms [30]. For example, for
very large or small α, these event shapes reduce to the left or right hemisphere mass, which are known to have
non-global logs. Since τα → 0 forces the massless dijet threshold, in which the SCET factorization theorem
is derived, only up to corrections of order lnα, it is not completely clear that SCET will reproduce all of the
α-dependence of the singular terms in τα.
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cS2L = (0)C2
F + (−6± 3)CFCA + (−2 ± 2)CFTFnf , (35)

so that

cS2ζ = 4ζ3c
S
2L and cS2ρ = cS2 − π2

3
cS2L . (36)

The uncertainty on αs due to the uncertainty on these numbers will be included in the fits.
Before moving on the αs extraction, we can compare the SCET prediction for the singular

parts of the NNLO distribution to the exact results, as was done for thrust in [11]. To do this,
we use DC(ρ) from Appendix C with the substitutions in Eq. (36). This lets us compare to the
C functions in the NNLO distribution, from [29]. Plots of ρDC and ρC are shown in Figure 3
as functions of log ρ. The uncertainty on cS2 and cS2L is included, but not visible in these plots.
Although the agreement is not perfect at very small ρ, it is expected to improve, as we seen
for thrust in [11], as the the infrared cutoff used in the NNLO calculation is reduced from the
value y0 = 10−5 used here. A version of this plot with cutoff y0 = 10−7 has been included as
Figure 13, confirming our expectations.

The difference between the full NNLO distribution and its singular parts, as in Eq. (25), is
shown in Figure 4. These curves, for all color structures, should go to zero at ρ = 0. For most
of the color structures, this looks plausible, although the 1/N2 color structure, corresponding
to the α3

sC
3
F coefficient in the heavy jet mass distribution which is fixed by non-Abelian

exponentiation, looks a bit suspicious. Because this constant is known, we have not included
an associated uncertainty. The discrepancy is likely due to the infrared cutoff y0 = 10−5 used
for these plots (an update with y0 = 10−7 is included as Figure 14). Note that even if the
Ansatz in Eq. (33) were wrong, a general dependence on cS2ζ will only affect some of the color
structures, and even then would only generate an overall up or down shift in these curves (cf.
the form of DC in Eq. (69)).

4 αs extraction and error analysis

In the previous section, we determined the unknown coefficients in the hemisphere soft function
and checked the singular terms against the exact NLO and NNLO heavy jet mass distributions.
Now we are ready to compare to data and fit for the strong coupling constant αs. The
procedure we follow is identical to the procedure used for thrust in [11], so we refer the reader
to that paper for missing details.

For heavy jet mass, as for thrust, we match to the fixed order distribution via

1

σ0

dσ

dρ
=

1

σ0

dσ2

dρ
+ r(ρ) , (37)

with

r(ρ) =
(αs

2π

)
[A(ρ)−DA(ρ)] +

(αs

2π

)2
[B(ρ)−DB(ρ)] +

(αs

2π

)3
[C(ρ)−DC(ρ)] , (38)

and DA, DB and DC are given in Appendix C. The A function is known analytically, and is
the same as for thrust (see [6]). For B(ρ) we use the output of event 2 [28], and for C(ρ) we
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Figure 5: Relative error for best fit to aleph data at 91.2 GeV. The inner green band includes
only statistical uncertainty, while the outer yellow band includes statistical, systematic and
generator uncertainties. The solid black line is for αs(MZ) = 0.1214, the best fit value for
heavy jet mass, while the dashed line has αs(mZ) = 0.1168, the best fit for thrust. The fit
ranges, 0.08 < ρ < 0.18 and 0.1 < τ < 0.24, are taken from [18].

use the NNLO calculation which has been provided to us by the authors of [3]. We normalize
to the total hadronic cross section at order α2

s, which is

σhad

σ0

= 1 +
αs

4π
[3CF ] +

(αs

4π

)2 [
CFCA

(
123

2
− 44ζ3

)
+ CFTFnf (−22 + 16ζ3)− C2

F

3

2

]
. (39)

Since the data is binned, what we actually use for the theory prediction is the difference
between the integrated heavy jet mass distribution evaluated at the bin edges: Rρ(ρ2)−Rρ(ρ1).
Our fit ranges are chosen to be the same as in [18], so that we can use their values for the
systematic experimental uncertainties.

The left panel of Figure 5 shows a comparison of the theory prediction for heavy jet mass
to the aleph data at 91.2 GeV. These curves use the default scale choices

µh = Q, µj = Q
√
ρ, µs = Qρ . (40)

These scales are the natural ones to minimize the large logarithms, and can be read off the
formula in Eq. (10). The best fit value of αs for heavy jet mass is αs(mZ) = 0.1214. We
show also in the same figure, the heavy jet mass distribution for αs(mZ) = 0.1168, which is
the value of αs derived in [11] from the fit to the thrust distribution at the same energy. In
the right panel of Figure 5, we show a comparison to data for thrust, with the same values
of αs. Overall, the fit to thrust is a much better fit. For heavy jet mass, the best fit gives
χ2/d.o.f.=67/9 using statistical uncertainties only, while for thrust, χ2/d.o.f.=32.5/13. The
relatively poor fit for heavy jet mass can be plainly seen in the figure. For thrust, the relative
distribution is flat over the fit range (dashed curve, right panel), while for heavy jet mass,
it is increasing (solid curve, left panel). This coordinates with the relatively larger power
corrections that we will find in the next section.

Next, we look at the uncertainties on the theoretical prediction. As with thrust, in [11],
we consider first separate variations of µh, µj, µs and the scale µm where the matching is done
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Figure 6: Convergence of resummed and fixed-order distributions. aleph data (red) at 91.2
GeV is included for reference. All plots have αs(mZ) = 0.1214.

by factors of 2. Figure 6 shows the effect of the envelope of these variations on the heavy jet
mass distribution, for four orders in perturbation theory. We use the same definitions for the
various orders as in [11]:

Order resum. Γcusp γn cn matching

1st order NLL 2-loop 1-loop tree –

2nd order NNLL 3-loop 2-loop 1-loop LO

3rd order N3LL 4-loop 3-loop 2-loop NLO

4th order N3LL 4-loop 3-loop 3-loop NNLO

The first three orders correspond to traditional counting in renormalization-group improved
perturbation theory, while 4thorder simply uses all the available information.

Next, we consider, the separate variations. The bands in the first four panels of Figure 7
show the effect of the scale uncertainties. The bottom two panels of Figure 7 show the effect
of the more natural correlated and anti-correlated scale variations introduced in [11]. The
correlated variation is defined to hold µj/µs fixed. So we vary

µj → c
√
τQ, µs → cτQ ,

1

2
< c < 2 . (41)

This probes the upper and lower limits on µj and µs, but avoids the unphysical region where
µs < µj or µh < µj. The orthogonal anti-correlated variation is defined to hold µ2

j/(Qµs)
fixed. It is

µ2
j → aQ2τ µs → aQτ,

1√
2
< a <

√
2 . (42)

This is independent from the correlated mode but again avoids unphysical scale choices.
Overall, we find good convergence order-by-order in perturbation theory. However, some of

the higher-order scale variations are outside of the range of the lower orders. This was not the
case for thrust, where the central value of the prediction was much more stable. Nevertheless,
for both thrust and heavy jet mass, the complete perturbative uncertainty, defined as the
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Figure 7: Perturbative uncertainty at Q = 91.2GeV. Each of the scales is varied separately
by a factor of two around the default value. We show 1

σ
ρdσ
dρ

and, for reference, aleph data at

lep 1 scaled by the central value of each bin. All plots have αs(mZ) = 0.1214.

envelope of the various variations (that is, the maximum and minimum over them) does have
the higher-order bands contained within the lower order bands, as can be seen in Figure 6.

Next, we fit the theoretical prediction to the aleph data from 91.2 to 206 GeV [24] and
extract αs. The fit is done by minimizing the χ2, using experimental statistical uncertainties,
for the theory prediction with default scale choices. The statistical error on αs is determined
by variations around this minimum. The perturbative uncertainty is extracted with the
uncertainty band method [31], exactly as in [11] for thrust. The envelope over the hard,
matching, correlated and anti-correlated scale variations are included in this extraction. We
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Q 91.2 133 161 172 183 189 200 206 AVG

fit range
0.08 0.06 0.06 0.06 0.06 0.04 0.04 0.04

–
0.18 0.25 0.25 0.25 0.25 0.20 0.20 0.20

χ2/d.o.f. 67/9 2.3/4 0.66/4 1.8/4 5.2/4 1.1/4 8.8/4 3.8/4 –

stat. err. 0.0002 0.0055 0.0108 0.0144 0.0065 0.0032 0.0034 0.0034 0.0015

syst. err. 0.0011 0.0011 0.0011 0.0011 0.0012 0.0013 0.0014 0.0011 0.0013

hadr. err. 0.0044 0.0028 0.0022 0.0021 0.0019 0.0018 0.0017 0.0016 0.0022

pert. err. +0.0006
−0.0011

+0.0006
−0.0011

+0.0009
−0.0014

+0.0003
−0.0005

+0.0007
−0.0011

+0.0006
−0.0009

+0.0006
−0.0008

+0.0005
−0.0007 0.0009

soft. err. 0.0005 0.0005 0.0006 0.0002 0.0005 0.0004 0.0004 0.0004 0.0004

tot. err. 0.0047 0.0064 0.0112 0.0147 0.0070 0.0040 0.0041 0.0040 0.0031

αs(mZ) 0.1214 0.1235 0.1328 0.1077 0.1267 0.1234 0.1218 0.1189 0.1220

pythia 0.1365 0.1239 0.1333 0.1073 0.1266 0.1214 0.1202 0.1168 0.1230

ariadne 0.1238 0.1262 0.1355 0.1093 0.1288 0.1239 0.1731 0.1687 0.1250

Table 1: Best fit to aleph data. The row labelled “pert err.” is derived from scale uncertain-
ties and the row labelled “soft err.” from the uncertainty on cS2 and cS2L in Eq.(33). The rows
labeled pythia and ariadne give the value of αs after correcting for hadronization and quark
masses using pythia or ariadne. The ariadne corrected prediction for the two highest two
energies produce very poor fits, and are excluded from the average

also include an additional soft uncertainty associated with the errors in the extraction of cS2 and
cS2L. These are computed by fitting αs within the errors on cS2 and cS2L in Eq. (33), and taking
the difference with the central value as the uncertainty. The soft and perturbative uncertainties
are assumed uncorrelated. The systematic uncertainties are taken from [18]. To use these
uncertainties, we are forced to keep our fit ranges the same as in [18]. The hadronization
uncertainties are also taken from [18], which are based on Monte Carlo simulations. Note
that, as in [11], we use the uncertainties from [18] but do not correct for hadronization.
Hadronization will be discussed in detail in Section 5. Finally, the values for each energy
are combined with a weight inversely proportional to the square of that energy’s total error.
The statistical uncertainties are assumed uncorrelated, and combined in quadrature, while for
the other uncertainties a linear weighted average is performed. The results are tabulated in
Table 1.

We show in Figure 8 the convergence of the best fit values as a function of energy. There
is very good consistency among the different energies and the convergence order-by-order in
perturbation theory is good as well. The fit values for different orders are given in Table 2.

The final fit for heavy jet mass gives

αs(mZ) = 0.1220± 0.0014 (stat)± 0.0013 (syst)± 0.0022 (had)± 0.0009 (pert)± 0.0004 (soft)

= 0.1220± 0.0031 (Heavy Jet Mass) . (43)
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each energy for first order, second order, third order and fourth order, as defined in the text.
The bands are weighted averages with errors combined from all energies.

lep 1 +lep 2 lep 1 (91.2 GeV only)

order αs total err pert. err αs tot.err pert.err

1storder 0.1111 0.0104 0.0100 0 1099 0.0100 0.0110

2ndorder 0.1156 0.0064 0.0057 0.1132 0.0072 0.0055

3rdorder 0.1189 0.0038 0.0025 0.1168 0.0052 0.0026

4thorder 0.1220 0.0031 0.0009 0.1214 0.0047 0.0011

Table 2: Best fit values and uncertainties at different orders.

This can be compared to the result for thrust, using exactly the same technique, and the same
energy aleph data (Table 2 of [11]). Updating this result to include the more recent NNLO
distributions [3, 4], using the same cS2 values, Eq.(33), with associated “soft” uncertainty, and
restricting to only the aleph data, we find

αs(mZ) = 0.1175± 0.0009 (stat)± 0.0011 (syst)± 0.0014 (had)± 0.0016 (pert)± 0.0006 (soft)

= 0.1175± 0.0026 (Thrust) . (44)

Combining these results, assuming 100% correlation between heavy jet mass and thrust, gives

αs(mZ) = 0.1193± 0.0011 (stat)± 0.0012 (syst)± 0.0017 (had)± 0.0013 (pert)± 0.0005 (soft)

= 0.1193± 0.0027 (Combined) . (45)

This value is consistent with the recent world average of αs(mZ) = 0.1184± 0.0007 [16].
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5 Non-perturbative effects and quark mass corrections

The αs fit from the previous section used the theory prediction at the parton level with five
flavors of massless quarks, neglecting hadronization and quark masses. Hadronization induces
a power correction on the heavy jet mass distribution. Its effect is suppressed by a small scale,
such as ΛQCD/Q or ΛQCD/µs relative to the perturbatively calculable part. The b-quark mass
corrections are suppressed by mb/Q. These effects are therefore both parametrically smaller
than the large logarithmic corrections which we resum. Nevertheless, they are quantitatively
important, and our final uncertainty on αs is dominated by the way these power corrections are
modeled. The dominant part of the b-quark mass corrections is calculable, and is expected to
shift αs at around the 1% level, as observed in [11, 14]. The inclusion of b-quark corrections will
be an important addition for future work. However, since they scale like 1/Q, the dominant
effect of these mass corrections can be absorbed into the same power correction model as
hadronization effects, which also scale as 1/Q. In this section, we explore the Monte Carlo
treatment of power corrections, and an alternative theoretical model.

Monte Carlo simulations can include quark masses explicitly. They also attempt to model
hadronization, for example with a string fragmentation model in pythia. This produces an
event with stable particles which can be run through a detector simulation. Such simulations
are an essential part of every experimental study, and must play some role even for inclusive
event shape analysis. For example, the event shape is often measured using only the charged
particles, whose momenta are more precisely known, and then corrected to all particles with
help of the simulation. Monte Carlo hadronization models have a number of free parameters
and can usually be tuned to any particular data set so that the simulation reproduces the
data quite well. However, no single tuning reproduces all the data, and therefore different
tunings are often used for different analyses. A more troubling fact is that, as demonstrated
in [11], the tunings often correct for features having nothing to do with hadronization, such as
subleading log resummation. Such tunings are guaranteed not to scale well with energy. This
may be a serious problem for high energy colliders which simultaneously probe many energy
scales, such as the Large Hadron Collider at CERN.

The hadronization uncertainty we used for the αs determination were taken from [18], but
we have also studied hadronization and mass effects in the Monte Carlos on our own. The
last two rows of Table 1 show the best fit vales for αs after the theory is corrected bin-by-
bin for both hadronization and bottom and charm quark mass corrections using the Monte
Carlo event generators pythia v6.409, with default parameters [23], and ariadne v4.12

with the aleph tune [32]. Recall that ariadne actually feeds through pythia to handle
hadronization, so the difference is entirely due to the way the parton shower is implemented.
With thrust, the same exercise was performed, and the corrections with ariadne were found
to be very small, which helped justify not correcting for hadronization and quark masses at all
in the published αs fits. For thrust corrected with pythia, there was a systematic downward
shift in αs. For heavy jet mass, the corrections with ariadne are large. In fact, for the
high energy data, ridiculous values such as αs = 0.1731 result. The pythia corrections are,
for heavy jet mass, smaller than they are for thrust. In fact, we find a bigger discrepancy
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Figure 9: Hadronization and mass corrections with pythia. The theoretical prediction using
pythia at the hadron level with massive quarks and the parton level with massless quarks is
compared to data and to the 4thorder theoretical prediction using SCET. For thrust, pythia
agrees remarkably well with the data, while for heavy jet mass, there is a substantial discrep-
ancy especially in the fit region, which is zoomed in on in the bottom panels.

between the thrust and heavy jet mass αs fits after correcting with either Monte Carlo than
without. Thus, although we cannot justify correcting the theory curve with either Monte
Carlo, we confirm that the hadronization uncertainties listed in Table 1, which were taken
from [18], span reasonable Monte-Carlo simulated variations due to hadronization and quark
mass effects.

To understand why the power corrections come out so differently for thrust and heavy jet
mass, we compare pythia at the parton and hadron levels to the 4thorder SCET prediction
(N3LL + NNLO), and to the aleph data at 91.2 GeV in Figure 9. From the top two panels,
we see that in the peak region, in both cases the parton-level theory prediction comes out
somewhere between the parton and hadron level Monte Carlo. However, in the bottom two
panels, which zoom in near the fit region, the difference between the two event shapes is much
more dramatic. For heavy jet mass, the SCET curve is above the data, while partonic pythia
is below it and hadronic pythia is even farther below. In contrast, for thrust, all of the curves
are much closer and the power corrections, as modeled by pythia are a much smaller effect.
It is clear that pythia has trouble handling both event shapes simultaneously.

An alternative to using Monte Carlo simulations to simulate hadronization is to model
the power corrections directly with effective field theory. As discussed in [22], hadronization
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effects can be absorbed into the soft function by convolution of the perturbatively calculable
part with a non-perturbative shape function

Sfull(kL, kR, µ) =

∫
dk′

Ldk
′

RSpart(kL − k′

L, kR − k′

R, µ)Smod(k
′

L, k
′

R) , (46)

where Spart(kL, kR, µ) is what we have previously just been calling S(kL, kR, µ) and Smod(kL, kR)
is a non-perturbative model function. Generally, Smod(kL, kR) is expected to have support only
for kL, kR . ΛQCD. As observed in [33], there is an ambiguity in the factorization of the soft
function into these two pieces, which leads to a difficulty in assigning physical significance
to Smod(kL, kR) and poor convergence in perturbation theory. This ambiguity is associated
with the existence of a renormalon, which can be removed within SCET [33, 22]. Indeed, if
data closer to the peak region were included in the fit, or if convergence of the model function
parameters were an issue, removing the renormalon could have an important effect. Since
we are not immediately interested in these issues, for simplicity, we will simply ignore the
renormalon.

The simplest model function is just composed of delta functions

Smod(kL, kR) = δ(kL − 1

2
ΛNP)δ(kR − 1

2
ΛNP) . (47)

The one parameter, ΛNP, can be thought of as representing the mass gap of QCD due to
hadronization and therefore should be of order ΛQCD. This model function allows us to fit the
leading power correction. Any other one-parameter family of shape functions can be written
in this form up to higher power corrections, which should have a subleading effect on the
distributions. For example, the smallest scale probed in our fits is the soft scale at the lower
end of the fit region at 91.2 GeV, µ = µs = ρQ > (0.08)(91.2 GeV) ∼ 7 GeV. With ΛQCD ∼ 300
MeV, this can be a 4% effect. Higher power corrections, of order (ΛQCD/µ)

2 should have less
than a 0.2% effect in our fit range.

Once this shape function is convoluted with the perturbative distribution, it has the effect
of simply shifting the distributions

dσ

dτ
(τ) → dσ

dτ
(τ − ΛNP) (48)

dσ

dρ
(ρ) → dσ

dρ
(ρ− 1

2
ΛNP) . (49)

The factor of 1
2
is easy to understand. The shift causes each hemisphere mass to increase by

1
2
ΛNP. Since thrust sums both hemisphere masses, while heavy jet mass measures only one,

heavy jet mass feels only half of the increase.
This model was studied for thrust in [11], where it was found that a larger ΛNP can be

compensated for by smaller αs leading to a flat direction in the two parameter fits. We
reproduce this result in Figure 10. This figure shows the 2σ and 5σ confidence regions in a
combined fit to all of the aleph data for thrust from LEP. On the same plot, using the same
model function, we show the contours for heavy jet mass. First of all, we observe that the
flat direction exists in both of the data sets. We might have hoped that having two event
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Figure 10: Contours of 2σ and 5σ confidence in the simultaneous fit of αs and a non-
perturbative shift parameter ΛNP to the thrust and heavy jet mass aleph data from 91.2
to 206 GeV. The combined fit is also shown.

Event Shape αs(mZ) ΛNP (GeV) χ2/d.o.f.

Thrust 0.1101 0.821 66.9/47

Heavy Jet Mass 0.1017 3.17 60.4/43

Combined 0.1236 -0.621 453/92

Table 3: Best fit values including leading power correction. The χ2 is calculated using both
statistical and experimental systematic uncertainties.

shapes would remove the ambiguity, but this does not happen. Second, we see that while the
perturbative fit has αs lower for thrust than for heavy jet mass, with the power corrections,
the value of αs is higher for thrust, as found in previous studies [17, 18]. However, when we
perform a simultaneous fit to all of the thrust and heavy jet mass degrees of freedom, we get a
value for αs that is larger than each one separately. The best fit for thrust, heavy jet mass, and
the combined fit are shown in Table 3. The fact that the thrust and heavy jet mass contours
do not overlap indicate that a better handling of non-perturbative effects is required.

We conclude that neither correcting the theory curves with a Monte Carlo simulation nor
using a minimal shape function approach for the leading power correction is satisfactory. The
shape function approach is improvable, while the Monte Carlo approach is limited by the
perturbative accuracy of the parton shower, which will be limited to leading-log resummation
in at least the near future (although SCET may eventually help go beyond LL [34, 35]). To
improve the shape function fit, a number of additional ingredients should be included. First
of all, the renormalon ambiguity in separating the perturbative and non-perturbative parts of
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the soft function should be removed. This is not likely to have much effect in the fit region
we use, but will allow us to use data closer to the peak. Having more data involved will more
highly constrain the fit and could remove the flat direction. To do this, we would need the bin-
by-bin correlations among the experimental systematic uncertainties, which are not publicly
available. In addition, there are perturbatively calculable effects we have not included, such
as electroweak and mb corrections, as in [14], which may have up to a 1% effect. It would be
very interesting to see if the thrust and heavy jet mass distributions can be reconciled once a
thorough effective field theory analysis, including non-perturbative effects, is performed.

6 Conclusions

In this paper, We have studied the heavy jet mass distribution using Soft-Collinear Effective
Theory including N3LL resummation and matching to the NNLO fixed order distribution. Up
to this point, this kind of accuracy has only been available for the thrust distribution. Having
an additional event shape helps control for systematic uncertainties, making the fit for αs

more trustworthy. It also gives us insight into power corrections and multi-scale soft functions
which will be important for the LHC.

The heavy jet mass fit gives αs(mZ) = 0.1220±0.0031. This value is larger than what had
been found for thrust at the same accuracy, αs(mZ) = 0.1175 ± 0.0026. The uncertainty on
heavy jet mass is larger partially due to a larger hadronization uncertainty. In our study, no
corrections were made for hadronization. We explored the traditional method of hadroniza-
tion, using Monte Carlo event generator, such as pythia and concluded that such an approach
is problematic for theoretical calculations of this accuracy. Since the Monte Carlo has been
already tuned to the data we are trying to match, the tuning has partially compensated for
resummation of subleading logarithms. Comparing pythia’s output in the fit region, the
hadronized distribution is actually farther away from the data than the parton-level distribu-
tion.

Our αs values from thrust and heavy jet mass contrast with the results of [17], which at
NLL+NNLO accuracy derived αs(mZ) = 0.1266 from thrust and αs(mZ) = 0.1211 from heavy
jet mass. A comparison of various fits to thrust and heavy jet mass using the same aleph

data is shown in Table 4. The authors of [17] have observed that event shapes tend to belong
to one of two classes. The first class, including thrust, tends to produce higher values of αs

than the second class, which includes heavy jet mass. These authors attributed the difference
to better perturbative stability in the second class. We find, if anything, better perturbative
stability for thrust. Instead, the reason for the systematic separation of αs values in this study,
and also in the NNLO study of [18], may have more to do with their use of a Monte Carlo
simulation to correct for hadronization. A similar conclusion was reached in [36] which studied
event shape moments. The values of αs for the two classes must eventually be reconcilable,
but there may be a physical reason why the power corrections for one class are larger than for
the other. This is worth understanding more thoroughly, and may have implications for the
LHC.

The alternative to using a Monte Carlo simulation for hadronization is to add a shape
function contribution within the effective field theory. Our simple shape function study shows

22



Order N3LL+NNLO N3LL+NLO NNLO NNLO [17] NLL+NNLO [17]

hadronization NO NO NO YES YES

Thrust 0.1175 0.1173 0.1262 0.1275 0.1266

Heavy Jet Mass 0.1220 0.1189 0.1265 0.1248 0.1211

Table 4: Best fit values for αs(mZ) at various orders in perturbation theory. The first three
columns are our results, the last two which include a Monte Carlo based hadronization cor-
rection are from [17].

that the leading power tends to shift αs from both heavy jet mass and from thrust to lower
values, with the heavy jet mass shift of larger magnitude. This can help explain why the thrust
αs comes out lower than the heavy jet mass αs in our study, and not in [17, 18]. However,
we also found that the best fit over all the aleph data from 91.2 to 206 GeV for thrust was
incompatible with the best fit from heavy jet mass, and that the flat direction between αs and
the non-perturbative parameter ΛNP persists in both distributions.

To get the values of αs extracted from thrust and heavy jet mass to agree may require
including additional ingredients, which can be done within the effective field theory framework.
For example, there is a calculable mb correction which tends to bring αs up at least for
thrust [14]. Including every possible correction must produce the same value of αs from thrust
and heavy jet mass, and it will be interesting to see precisely how this happens. Also, more
data should be included. Using data for values of heavy jet mass and thrust closer to the peak
will lead to a more constrained shape function fit, although it may require going beyond the
leading power. In addition, using data from other lep experiments and other experiments at
lower center-of-mass energy can further test and constrain the event shapes.

However, it is not clear if all of the differences between thrust and heavy jet mass can be
accounted for entirely within SCET. For example, there is the possibility that the difference
between thrust and heavy jet mass has more to do with the way hadron masses are handled
experimentally than from higher order power corrections. In [37], substantial differences in the
form of power corrections among the E-scheme, p-scheme and decay-scheme were found. It
may turn out that an ultra-precise αs fit can only be made if the identity of all the hadrons is
known, which may be possible for future measurements but is not available for existing data.
More likely, the thrust and heavy jet mass distributions can be made to agree within SCET,
but the uncertainty on αs will ultimately be limited by a hadron-mass-scheme dependent
uncertainty. In any case, once the ingredients discussed for thrust in [14] are applied to heavy
jet mass, we will be able to extract a more precise lesson about the importance of power
corrections. In addition to reducing the uncertainty from αs and teaching us about power
corrections, combining the insights from thrust and heavy jet mass will more generally pave
the way for deeper understanding of relevant jet-based observables at the LHC.
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Figure 11: A comparison of the full fixed-order calculations and expanded SCET at NLO.
Update of Figure 1 with cutoff y = 10−12 in B(ρ) from event 2.

Note Added

After this manuscript appeared, it was suggested that the precision on cS2ρ and cS2 could be
improved by lowering the infrared cutoff used by event 2. The cutoff y is implemented by
throwing out events if two partons have (p1 + p2)

2 < yQ2. The default cutoff is 10−8, and
the authors of event 2 caution about numerical instabilities if the cutoff is taken too low.
We find that for cutoffs below 10−15, there are insurmountable numerical problems, however
y = 10−12 seems to be convergent. We therefore ran 135 billion events with y = 10−12 and
2500 bins (∆ρ = 0.0002)) – the main text uses 10 billion events with y = 10−8 and 1000 bins
(∆ρ = 0.0005). The difference between this new numerical data and the SCET prediction for
the singular terms is shown in Figure 11, which is to be compared to Figure 1. One can see
that the curves for all color structures now converge to zero, as expected.

Next, the constant cS2ρ was extracted from these curves. The value cS2ρ for various lower
bounds ρmin are shown in Figure 12. Again, improved numerical stability is clear. Fitting
a sixth order polynomial to the 59 points between ρmin = 0.0004 and ρmin = 0.012 and
extrapolating to ρmin = 0 leads to

cS2ρ = (49.1)C2
F + (−33.2)CFCA + (50.2)CFTFnf . (50)

The value of the C2
F coefficient is now consistent with the prediction of π4

2
= 48.7 from non-

Abelian exponentiation. The fit is somewhat sensitive to the lower value of ρmin used in the
regression, but not very sensitive to the upper value. Fitting a fourth order polynomial to
the 38 points between ρmin = 0.0006 and ρmin = 0.008 gives cS2ρ = (49.8)C2

F + (−33.3)CFCA +
(50.3)CFTFnf . Since the CFCA and CFTFnf terms are practically unchanged, and the C2

F

term is fixed by non-Abelian exponentiation, it is reasonable to assume that the remaining
uncertainty on these numbers will have a negligible effect on the αs fits. Performing the same
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Figure 12: Extraction of the two-loop constants in the soft function. Update of Figure 2 with
cutoff y = 10−12 in B(ρ) from event 2.

analysis for thrust, leads to

cS2 = (49.1)C2
F + (−57.8)CFCA + (43.4)CFTFnf (51)

Combining these, assuming the Hoang-Kluth Ansatz for the soft function, Eq. (30), gives

cS2L = (0)C2
F + (−7.5)CFCA + (−2.1)CFTFnf (52)

Thus, we take

cS2 =
π4

2
C2

F + (−57.8)CFCA + (43.4)CFTFnf (53)

cS2L = (0)C2
F + (−7.5)CFCA + (−2.1)CFTFnf (54)

With these more accurate numbers and a more accurate numerical calculation of the NNLO
distribution, we can now repeat our comparison of the singular terms to the exact distribution.
Using an infrared cutoff of 10−7 for the C functions, the agreement with the singular terms is
improved. This can be seen in Figure 13, which is an update of Figure 3. Taking the difference
between the curves gives Figure 14. One sees that the 1/N2 color structure, corresponding to
C3

F , has improved convergence towards zero. If these curves were known with perfect accuracy,
they could be used to test the Ansatz in Eq. (30). The most poorly convergent color structures,
1/N2 and n2

f are not sensitive to this Ansatz, and the others are consistent with convergence
to zero within the statistical uncertainty on the numerical NNLO calculation.

Finally, we reconsider the αs fits in light of these more precise soft function coefficients and
NLO matching functions. Refitting the thrust distribution to the aleph data changes αs(mZ)
from 0.1175 to 0.1176 and refitting the heavy jet mass distribution raises αs(mZ) from 0.1220
to 0.1224. These shifts are within the quoted soft uncertainties.
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A Soft function

To evaluate the heavy jet mass distribution with NNLO precision, we need the soft function
at the scale µs evaluated to order α3

s. The Laplace transformed soft function can be written
as

s̃(L1, L2) = s̃µ(L1, µ)s̃µ(L2, µ)s̃f(L1 − L2) , (55)

where L1 = ln(µνLe
γE) and L2 = ln(µνRe

γE ), with νL and νR the Laplace conjugate variables
to the soft momenta kL and kR. The µ-dependence is determined by the function we call
s̃µ(L, µ). This is equivalent to the function Us(x, µ, (ixe

γE )−1) in [22], and we have already
given its expansion to order α3

s in Eq. (14). The function s̃f(L) is µ-independent with αs

evaluated at the scale (νLνR)
−1/2. It is more useful to be able to use αs evaluated at the scale

µ, which we can do with the replacement

(αs

4π

)
→
(
αs(µ)

4π

)
+

(
αs(µ)

4π

)2

[−β0(L1 + L2)] +

(
αs(µ)

4π

)3 [
β2
0(L1 + L2)

2 − β1(L1 + L2)
]
.

(56)
Then truncating the soft function to finite order will induce some residual µ-dependence.

For the finite part s̃f(L), we use for numerical studies the form in Eq. (30):

s̃f (L) = 1 +
(αs

4π

)
cS1 +

(αs

4π

)2 [
cS2 + cS2LL

2
]
+ · · · , (57)

with
cS1 = −CFπ

2 (58)

and

cS2 =
π4

2
C2

F + (−57.8)CFCA + (43.4)CFTFnf (59)

cS2L = (0)C2
F + (−7.5)CFCA + (−2.1)CFTFnf (60)

which have been extracted using SCET from the exact NLO thrust and heavy jet mass distri-
butions. (Note: these numbers are updated to Eq. (53). The main text and fits use the earlier
values in Eq. (33).)

More generally, for NLO-matching, all that is relevant is a single projection of the order
α2 soft function

cS2ρ =
1

π

∫ π

0

s̃f 2(iL) dL = cS2 − π2

3
cS2L . (61)
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For NNLO matching, another projection is necessary, of the form in Eq. (27). For the form
in Eq. (57), this projection is

cS2ζ =
2

π

∫ π

0

s̃f 2(iL) ln

[
2 cos(

L

2
)

]
dL = 4ζ3c

S
2L . (62)

These are then expanded as

cS2 = C2
F c

S
2CF

+ CFCAc
S
2CA

+ CFnFTF c
S
2nf

. (63)

We will use these expressions for the singular heavy jet mass expansion and the Gij coefficients
below. We also use anomalous dimensions and β-function coefficients which can be found
in [11].

B Expanded soft function

Putting the pieces together, the soft function expanded to order α3
s with αs = αs(µ) is

s̃(L1, L2, µ) = 1 +
(αs

4π

) [
− (L1

2 + L2
2)Γ0 + (L1 + L2)γ

S
0 + cS1

]

+
(αs

4π

)2 [1
2
(L1

4 + L2
4)Γ2

0 + L1L2(L1Γ0 − γS
0 )(L2Γ0 − γS

0 ) + (L1
3 + L2

3)

(
2

3
β0Γ0 − Γ0γ

S
0

)

+
(
L1

2 + L2
2
)(

−Γ1 − β0γ
S
0 +

1

2
(γS

0 )
2 − cS1Γ0

)
+ (L1 + L2)(γ

S
1 − cS1β0 + cS1 γ

S
0 )

+ cS2 + (L1 − L2)
2cS2L

]

+
(αs

4π

)3[
− 1

6
Γ3
0(L1

6 + L2
6 + 3L1

2L2
4 + 3L2

2L1
4) +

(
− 2

3
β0Γ

2
0 +

1

2
γS
0 Γ

2
0

)
(L1

5 + L2
5)

+
1

2
γS
0 Γ

2
0(L1

4L2 + L2
4L1) +

(
− 2

3
β0Γ

2
0 + γS

0 Γ
2
0

)
(L1

3L2
2 + L2

3L1
2)

+
(
− 1

2
(γS

0 )
2Γ0 +

5

3
γS
0 β0Γ0 −

2

3
β2
0Γ0 + Γ0Γ1

)
(L1
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4)

+
(
− (γS

0 )
2Γ0 +

2

3
γS
0 β0Γ0

)
(L1

3L2 + L2
3L1) +

(
− (γS
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2Γ0 + 2γS

0 β0Γ0 + 2Γ0Γ1
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L1

2L2
2

+
(1
6
(γS

0 )
3 − (γS

0 )
2β0 +

4

3
γS
0 β

2
0 − γS

1 Γ0 +
2

3
β1Γ0 − γS

0 Γ1 +
4

3
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)
(L1
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3)

+
(
+

1

2
(γS
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3 − (γS
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1 Γ0 − γS
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)
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2L2 + L2
2L1)

+
(
γS
0 γ

S
1 − 2γS

1 β0 − γS
0 β1 − Γ2

)
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2) + 2γS

0 γ
S
1 L1L2 + γS
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+
(
− γS

0 Γ0 + β0Γ0

)
(L1

2L2 + L2
2L1) +

(1
2
(γS

0 )
2 − 2γS

0 β0 + 2β2
0 − Γ1

)
(L1

2 + L2
2)

+
(
(γS

0 )
2 − 2γS

0 β0

)
L1L2 +

(
− β1 + γS

1

)
(L1 + L2)

}

+
(
cS2 + cS2L(L1 − L2)

2
){

(−2β0 + γS
0 )(L1 + L2)− Γ0(L1

2 + L2
2)
}]

. (64)

C Singular terms in the heavy jet mass distribution

The singular part of the heavy jet mass distribution is calculable in SCET. Writing it in the
form

D(ρ) = δ(ρ)Dδ +
(αs

2π

)
[DA(ρ)]+ +

(αs

2π

)2
[DB(ρ)]+ +

(αs

2π

)3
[DC(ρ)]+ + . . . , (65)

the result is

Dδ = 1 +
(αs

4π

)[
CF

(
−2 +

2π2

3

)]
(66)

+
(αs

4π

)2 [
C2

F

(
4 +

π4

10
− 48ζ3

)
+ CACF

(
493

81
+

85π2

6
− 73π4

90
+

566ζ3
9

)
(67)

+ CFTFnf

(
28

81
− 14π2

3
− 88ζ3

9

)
+ cS2ρ

]
, (68)

and

DA(ρ) =
1

ρ

{
CF

[
− 4 ln ρ− 3

]}
,

DB(ρ) =
1

ρ

{
C2

F

[
8 ln3 ρ+ 18 ln2 ρ+ (13− 8π2

3
) ln ρ+

9

4
− π2 − 4ζ3

]

+ CFTFnf

[
− 4 ln2 ρ+

22

9
ln ρ+ 5

]

+ CFCA

[
11 ln2 ρ+ (−169

18
+

2π2

3
) ln ρ− 57

4
+ 6ζ3

]}
,

DC(ρ) =
1

ρ

{
C3

F

[
− 8 ln5 ρ− 30 ln4 ρ+ ln3 ρ

(
− 44 + 8π2

)
+ ln2 ρ

(
8ζ3 + 12π2 − 27

)
(69)

+ ln ρ
(
− cS2ρCF

+ 48ζ3 −
41π4

90
+

13π2

3
− 17

2

)

+
4π2

3
ζ3 + 14ζ3 + 12ζ5 −

3π4

40
− 5π2

4
− 47

8
− 3

4
cS2ρCF

− 1

2
cS2ζCF

]

+C2
FnfTF

[40 ln4 ρ

3
+

56 ln3 ρ

9
+ ln2 ρ

(
− 43− 16π2

3

)
+ ln ρ

(232ζ3
9

+
58π2

9
− 1495

81
− cS2ρnf

)
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+
254ζ3
9

− 7π4

15
+

71π2

18
+

1511

108
+

2

3
cS2ρCF

− 3

4
cS2ρnf

− 1

2
cS2ζnf

]

+CFn
2
fT

2
F

[
− 112 ln3 ρ

27
+

68 ln2 ρ

9
+ ln ρ

(140
81

+
16π2

27

)
− 176ζ3

27
− 64π2

81
− 3598

243
+

2

3
cS2ρnf

]

+CFC
2
A

[
− 847 ln3 ρ

27
+ ln2 ρ

(3197
36

− 11π2

3

)
+ ln ρ

(
22ζ3 −

11π4

45
+

85π2

9
− 11323

324

)

−10ζ5 +
361ζ3
27

+
541π4

540
− 739π2

81
− 77099

486
− 11

6
cS2ρCA

]

+C2
FCA

[
− 110 ln4 ρ

3
+ ln3 ρ

(
− 58

9
− 8π2

3

)

+ ln2 ρ
(
− 36ζ3 +

35π2

3
+

467

4

)
+ ln ρ

(
− 1682ζ3

9
+

133π4

90
− 403π2

18
+

29663

324
− cS2ρCA

)

−30ζ5 −
1943ζ3
18

+
2π2ζ3
3

+
77π4

40
− 757π2

72
− 49

27
− 11

6
cS2ρCF

− 3

4
cS2ρCA

− 1

2
cS2ζCA

]

+CACFnfTF

[616
27

ln3 ρ+ ln2 ρ
(4π2

3
− 512

9

)
+ ln ρ

(
8ζ3 −

128π2

27
+

673

81

)

+
608ζ3
27

− 10π4

27
+

430π2

81
+

24844

243
− 11

6
cS2ρnf

+
2

3
cS2ρCA

]
} . (70)

D Gij expansion

Occasionally it is helpful to write an event shape distribution as

R(x) =

(
1 +

∞∑

m=1

Cm

( α

2π

)m
)
exp

(
∞∑

i=1

i+1∑

j=1

Gi j

( α

2π

)i
lnj 1

x

)
+

∞∑

n=0

αnfn(x) . (71)

The Gij and Cm are calculable in SCET for exponentiation up to N3LL accuracy.
The results are

C1 = CF

(
− 5

2
+

π2

3

)
,

C2 = C2
F

(41
8

+
π4

40
− π2

2
− 12ζ3 +

1

4
cS2ρCF

)
+ CFnfTF

(905
162

− 58

9
ζ3 −

7π2

6
+

1

4
cS2ρnf

)

+ CACF

(
− 8977

648
− 73π4

360
+

85π2

24
+

481

18
ζ3 +

1

4
cS2ρCA

)
, (72)

and

G12 = −2CF ,

G11 = 3CF ,
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G23 = CF

[
nfTF

4

3
− CA

11

3

]
, (73)

G22 = CF

[
− CF

2π2

3
+ nfTF

11

9
+ CA

(
− 169

36
+

π2

3

)]
,

G21 = CF

[
CF

(
4ζ3 +

3

4

)
− 5nfTF + CA

(57
4

− 6ζ3

)]
,

G34 = CF

[
− C2

A

847

108
+ CAnfTF

154

27
− n2

fT
2
F

28

27

]
,

G33 = CF

[
C2

A

(
− 3197

108
+

11π2

9

)
+ nfTFCA

(512
27

− 4π2

9

)
− n2

fT
2
F

68

27
+

CFnfTF

(
2 +

4π2

3

)
− CFCA

11π2

3
+ C2

F

16

3
ζ3

]
,

G32 = CF

[
C2

A

(
11ζ3 −

11π4

90
+

85π2

18
− 11323

648

)
+ CAnfTF

(
4ζ3 −

64π2

27
+

673

162

)

+ n2
fT

2
F

(70
81

+
8π2

27

)
+ C2

F

(2π4

45
− 12ζ3

)
+ CFCA

(
− 44ζ3 +

2π4

9
− 239π2

108
+

11

8

)

+ CFnfTF

(
8ζ3 +

13π2

27
+

43

6

)]
,

G31 = CF

[
C2

F

(29
8

+ π2 − 8

3
π2ζ3 + 26ζ3 − 12ζ5 +

1

2
cS2ζCF

)

+ CFnfTF

(
− 77

4
+

7π4

15
+

11π2

9
− 188

9
ζ3 −

2

3
cS2ρCF

+
1

2
cS2ζnf

)

+ CFCA

(23
2

− 79π4

60
− 175π2

36
+

4π2

3
ζ3 +

493

9
ζ3 + 30ζ5 +

11

6
cS2ρCF

+
1

2
cS2ζCF

)

+ C2
A

(77099
486

− 541π4

540
+

739π2

81
− 361

27
ζ3 + 10ζ5 +

11

6
cS2ρCA

)

+ CAnfTF

(
− 24844

243
+

10π4

27
− 430π2

81
− 608

27
ζ3 −

2

3
cS2ρCA

+
11

6
cS2ρnf

)

+ n2
fT

2
F

(3598
243

+
64π2

81
+

176

27
ζ3 −

2

3
cS2ρnf

)]
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