81 research outputs found

    Transcranial magnetic stimulation of human adult stem cells in the mammalian brain

    Get PDF
    Introduction: The burden of stroke on the community is growing, and therefore, so is the need for a therapy to overcome the disability following stroke. Cellular-based therapies are being actively investigated at a pre-clinical and clinical level. Studies have reported the beneficial effects of exogenous stem cell implantation, however, these benefits are also associated with limited survival of implanted stem cells. This exploratory study investigated the use of transcranial magnetic stimulation (TMS) as a complementary therapy to increase stem cell survival following implantation of human dental pulp stem cells (DPSC) in the rodent cortex. Methods: Sprague-Dawley rats were anesthetized and injected with 6 x 10⁵ DPSC or control media via an intracranial injection, and then received real TMS (TMS₀.₂ Hz) or sham TMS (TMSsham) every 2nd day beginning on day 3 post DPSC injection for 2 weeks. Brain sections were analyzed for the survival, migration and differentiation characteristics of the implanted cells. Results: In animals treated with DPSC and TMS₀.₂ Hz there were significantly less implanted DPSC and those that survived remained in the original cerebral hemisphere compared to animals that received TMSsham. The surviving implanted DPSC in TMS₀.₂ Hz were also found to express the apoptotic marker Caspase-3. Conclusions: We suggest that TMS at this intensity may cause an increase in glutamate levels, which promotes an unfavorable environment for stem cell implantation, proliferation and differentiation. It should be noted that only one paradigm of TMS was tested as this was conducted as a exploratory study, and further TMS paradigms should be investigated in the future.Karlea L. Kremer, Ashleigh E. Smith, Lauren Sandeman, Joshua M. Inglis, Michael C. Ridding, and Simon A. Kobla

    Density-functional-based predictions of Raman and IR spectra for small Si clusters

    Get PDF
    We have used a density-functional-based approach to study the response of silicon clusters to applied electric fields. For the dynamical response, we have calculated the Raman activities and infrared (IR) intensities for all of the vibrational modes of several clusters (SiN with N=3-8, 10, 13, 20, and 21) using the local density approximation (LDA). For the smaller clusters (N=3-8) our results are in good agreement with previous quantum-chemical calculations and experimental measurements, establishing that LDA-based IR and Raman data can be used in conjunction with measured spectra to determine the structure of clusters observed in experiment. To illustrate the potential of the method for larger clusters, we present calculated IR and Raman data for two low-energy isomers of Si10 and for the lowest-energy structure of Si13 found to date. For the static response, we compare our calculated polarizabilities for N=10, 13, 20, and 21 to recent experimental measurements. The calculated results are in rough agreement with experiment, but show less variation with cluster size than the measurements. Taken together, our results show that LDA calculations can offer a powerful means for establishing the structures of experimentally fabricated clusters and nanoscale systems

    Developing a multivariable prediction model for functional outcome after reperfusion therapy for acute ischaemic stroke: study protocol for the Targeting Optimal Thrombolysis Outcomes (TOTO) multicentre cohort study.

    Full text link
    INTRODUCTION:Intravenous thrombolysis (IVT) with recombinant tissue plasminogen activator (rt-PA) is the only approved pharmacological reperfusion therapy for acute ischaemic stroke. Despite population benefit, IVT is not equally effective in all patients, nor is it without significant risk. Uncertain treatment outcome prediction complicates patient treatment selection. This study will develop and validate predictive algorithms for IVT response, using clinical, radiological and blood-based biomarker measures. A secondary objective is to develop predictive algorithms for endovascular thrombectomy (EVT), which has been proven as an effective reperfusion therapy since study inception. METHODS AND ANALYSIS:The Targeting Optimal Thrombolysis Outcomes Study is a multicenter prospective cohort study of ischaemic stroke patients treated at participating Australian Stroke Centres with IVT and/or EVT. Patients undergo neuroimaging using multimodal CT or MRI at baseline with repeat neuroimaging 24 hours post-treatment. Baseline and follow-up blood samples are provided for research use. The primary outcome is good functional outcome at 90 days poststroke, defined as a modified Rankin Scale (mRS) Score of 0-2. Secondary outcomes are reperfusion, recanalisation, infarct core growth, change in stroke severity, poor functional outcome, excellent functional outcome and ordinal mRS at 90 days. Primary predictive models will be developed and validated in patients treated only with rt-PA. Models will be built using regression methods and include clinical variables, radiological measures from multimodal neuroimaging and blood-based biomarkers measured by mass spectrometry. Predictive accuracy will be quantified using c-statistics and R2. In secondary analyses, models will be developed in patients treated using EVT, with or without prior IVT, reflecting practice changes since original study design. ETHICS AND DISSEMINATION:Patients, or relatives when patients could not consent, provide written informed consent to participate. This study received approval from the Hunter New England Local Health District Human Research Ethics Committee (reference 14/10/15/4.02). Findings will be disseminated via peer-reviewed publications and conference presentations

    Plasmin Generation Potential and Recanalization in Acute Ischaemic Stroke; an Observational Cohort Study of Stroke Biobank Samples.

    Full text link
    Rationale: More than half of patients who receive thrombolysis for acute ischaemic stroke fail to recanalize. Elucidating biological factors which predict recanalization could identify therapeutic targets for increasing thrombolysis success. Hypothesis: We hypothesize that individual patient plasmin potential, as measured by in vitro response to recombinant tissue-type plasminogen activator (rt-PA), is a biomarker of rt-PA response, and that patients with greater plasmin response are more likely to recanalize early. Methods: This study will use historical samples from the Barcelona Stroke Thrombolysis Biobank, comprised of 350 pre-thrombolysis plasma samples from ischaemic stroke patients who received serial transcranial-Doppler (TCD) measurements before and after thrombolysis. The plasmin potential of each patient will be measured using the level of plasmin-antiplasmin complex (PAP) generated after in-vitro addition of rt-PA. Levels of antiplasmin, plasminogen, t-PA activity, and PAI-1 activity will also be determined. Association between plasmin potential variables and time to recanalization [assessed on serial TCD using the thrombolysis in brain ischemia (TIBI) score] will be assessed using Cox proportional hazards models, adjusted for potential confounders. Outcomes: The primary outcome will be time to recanalization detected by TCD (defined as TIBI ≥4). Secondary outcomes will be recanalization within 6-h and recanalization and/or haemorrhagic transformation at 24-h. This analysis will utilize an expanded cohort including ~120 patients from the Targeting Optimal Thrombolysis Outcomes (TOTO) study. Discussion: If association between proteolytic response to rt-PA and recanalization is confirmed, future clinical treatment may customize thrombolytic therapy to maximize outcomes and minimize adverse effects for individual patients

    A non-canonical role for desmoglein-2 in endothelial cells: implications for neoangiogenesis

    Get PDF
    Desmogleins (DSG) are a family of cadherin adhesion proteins that were first identified in desmosomes and provide cardiomyocytes and epithelial cells with the junctional stability to tolerate mechanical stress. However, one member of this family, DSG2, is emerging as a protein with additional biological functions on a broader range of cells. Here we reveal that DSG2 is expressed by nondesmosome- forming human endothelial progenitor cells as well as their mature counterparts [endothelial cells (ECs)] in human tissue from healthy individuals and cancer patients. Analysis of normal blood and bone marrow showed that DSG2 is also expressed by CD34?CD45dim hematopoietic progenitor cells. An inability to detect other desmosomal components, i.e., DSG1, DSG3 and desmocollin (DSC)2/3, on these cells supports a solitary role for DSG2 outside of desmosomes. Functionally, we show that CD34?CD45dimDSG2? progenitor cells are multi-potent and pro-angiogenic in vitro. Using a ‘knockout-first’ approach, we generated a Dsg2 loss-of-function strain of mice (Dsg2lo/lo) and observed that, in response to reduced levels of Dsg2: (i) CD31? ECs in the pancreas are hypertrophic and exhibit altered morphology, (ii) bone marrowderived endothelial colony formation is impaired, (iii) ex vivo vascular sprouting from aortic rings is reduced, and (iv) vessel formation in vitro and in vivo is attenuated. Finally, knockdown of DSG2 in a human bone marrow EC line reveals a reduction in an in vitro angiogenesis assay as well as relocalisation of actin and VE-cadherin away from the cell junctions, reduced cell–cell adhesion and increased invasive properties by these cells. In summary, we have identified DSG2 expression in distinct progenitor cell subpopulations and show that, independent from its classical function as a component of desmosomes, this cadherin also plays a critical role in the vasculature.Lisa M. Ebert, Lih Y. Tan, M. Zahied Johan, Kay Khine Myo Min, Michaelia P. Cockshell, Kate A. Parham, Kelly L. Betterman, Paceman Szeto, Samantha Boyle, Lokugan Silva, Angela Peng, YouFang Zhang, Andrew Ruszkiewicz, Andrew C. W. Zannettino, Stan Gronthos, Simon Koblar, Natasha L. Harvey, Angel F. Lopez, Mark Shackleton, Claudine S. Bonde

    The BMP antagonist Gremlin1 contributes to the development of cortical excitatory neurons, motor balance and fear responses

    Get PDF
    Bone morphogenetic protein (BMP) signaling is required for early forebrain development and cortical formation. How the endogenous modulators of BMP signaling regulate the structural and functional maturation of the developing brain remains unclear. Here we show that expression of the BMP antagonist, Grem1, marks committed layer Ⅴ and Ⅵ glutamatergic neurons in the embryonic mouse brain. Lineage tracing of Grem1-expressing cells in the embryonic brain was examined by administration of tamoxifen to pregnant Grem1creERT; Rosa26LSLTdtomato mice at 13.5 days post coitum (dpc), followed by collection of embryos later in gestation. In addition, at 14.5 dpc, bulk mRNA seq analysis of differentially expressed transcripts between FACS sorted Grem1 positive and negative cells was performed. We also generated Emx1-cre mediated Grem1 conditional knockout mice (Emx1-Cre;Grem1flox/flox) in which the Grem1 gene was deleted specifically in the dorsal telencephalon. Grem1Emx1cKO animals had reduced cortical thickness, especially layers Ⅴ and Ⅵ and impaired motor balance and fear sensitivity compared to littermate controls. This study has revealed new roles for Grem1 in the structural and functional maturation of the developing cortex.Mari Ichinose, Nobumi Suzuki, Tongtong Wang, Hiroki Kobayashi, Laura Vrbanac, Jia Q. Ng, Josephine A. Wright, Tamsin R. M. Lannagan, Krystyna A. Gieniec, Martin Lewis, Ryota Ando, Atsushi Enomoto, Simon Koblar, Paul Thomas, Daniel L. Worthley and Susan L. Wood

    HIV-1-Infected and Immune-Activated Macrophages Induce Astrocytic Differentiation of Human Cortical Neural Progenitor Cells via the STAT3 Pathway

    Get PDF
    Diminished adult neurogenesis is considered a potential mechanism in the pathogenesis of HIV-1-associated dementia (HAD). In HAD, HIV-1-infected and immune-activated brain mononuclear phagocytes (MP; perivascular macrophages and microglia) drive central nervous system (CNS) inflammation and may alter normal neurogenesis. We previously demonstrated HIV-1-infected and lipopolysaccharide (LPS) activated monocyte-derived macrophages (MDM) inhibit human neural progenitor cell (NPC) neurogenesis, while enhancing astrogliogenesis through the secretion of the inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), in vitro and in vivo. Here we further test the hypothesis that HIV-1-infected/activated MDM promote NPC astrogliogenesis via activation of the transcription factor signal transducer and activator of transcription 3 (STAT3), a critical factor for astrogliogenesis. Our results show that LPS-activated MDM-conditioned medium (LPS-MCM) and HIV-infected/LPS-activated MDM-conditioned medium (LPS+HIV-MCM) induced Janus kinase 1 (Jak1) and STAT3 activation. Induction of the Jak-STAT3 activation correlated with increased glia fibrillary acidic protein (GFAP) expression, demonstrating an induction of astrogliogenesis. Moreover, STAT3-targeting siRNA (siSTAT3) decreased MCM-induced STAT3 activation and NPC astrogliogenesis. Furthermore, inflammatory cytokines (including IL-6, IL-1β and TNF-α) produced by LPS-activated and/or HIV-1-infected MDM may contribute to MCM-induced STAT3 activation and astrocytic differentiation. These observations were confirmed in severe combined immunodeficient (SCID) mice with HIV-1 encephalitis (HIVE). In HIVE mice, siRNA control (without target sequence, sicon) pre-transfected NPCs injected with HIV-1-infected MDM showed more astrocytic differentiation and less neuronal differentiation of NPCs as compared to NPC injection alone. siSTAT3 abrogated HIV-1-infected MDM-induced astrogliogenesis of injected NPCs. Collectively, these observations demonstrate that HIV-1-infected/activated MDM induces NPC astrogliogenesis through the STAT3 pathway. This study generates important data elucidating the role of brain inflammation in neurogenesis and may provide insight into new therapeutic strategies for HAD

    Developing a multivariable prediction model for functional outcome after reperfusion therapy for acute ischaemic stroke: study protocol for the Targeting Optimal Thrombolysis Outcomes (TOTO) multicentre cohort study

    Get PDF
    INTRODUCTION: Intravenous thrombolysis (IVT) with recombinant tissue plasminogen activator (rt-PA) is the only approved pharmacological reperfusion therapy for acute ischaemic stroke. Despite population benefit, IVT is not equally effective in all patients, nor is it without significant risk. Uncertain treatment outcome prediction complicates patient treatment selection. This study will develop and validate predictive algorithms for IVT response, using clinical, radiological and blood-based biomarker measures. A secondary objective is to develop predictive algorithms for endovascular thrombectomy (EVT), which has been proven as an effective reperfusion therapy since study inception. METHODS AND ANALYSIS: The Targeting Optimal Thrombolysis Outcomes Study is a multicenter prospective cohort study of ischaemic stroke patients treated at participating Australian Stroke Centres with IVT and/or EVT. Patients undergo neuroimaging using multimodal CT or MRI at baseline with repeat neuroimaging 24 hours post-treatment. Baseline and follow-up blood samples are provided for research use. The primary outcome is good functional outcome at 90 days poststroke, defined as a modified Rankin Scale (mRS) Score of 0-2. Secondary outcomes are reperfusion, recanalisation, infarct core growth, change in stroke severity, poor functional outcome, excellent functional outcome and ordinal mRS at 90 days. Primary predictive models will be developed and validated in patients treated only with rt-PA. Models will be built using regression methods and include clinical variables, radiological measures from multimodal neuroimaging and blood-based biomarkers measured by mass spectrometry. Predictive accuracy will be quantified using c-statistics and R2. In secondary analyses, models will be developed in patients treated using EVT, with or without prior IVT, reflecting practice changes since original study design. ETHICS AND DISSEMINATION: Patients, or relatives when patients could not consent, provide written informed consent to participate. This study received approval from the Hunter New England Local Health District Human Research Ethics Committee (reference 14/10/15/4.02). Findings will be disseminated via peer-reviewed publications and conference presentations.Elizabeth Holliday ... Marten Snel ... Simon Koblar ... Monica Hamilton-Bruce ... Timothy Kleinig ... Paul J Trim ... et al

    Leukemia Inhibitory Factor in Rat Fetal Lung Development: Expression and Functional Studies

    Get PDF
    Background: Leukemia inhibitory factor (LIF) and interleukin-6 (IL-6) are members of the family of the glycoprotein 130 (gp130)-type cytokines. These cytokines share gp130 as a common signal transducer, which explains why they show some functional redundancy. Recently, it was demonstrated that IL-6 promotes fetal lung branching. Additionally, LIF has been implicated in developmental processes of some branching organs. Thus, in this study LIF expression pattern and its effects on fetal rat lung morphogenesis were assessed. Methodology/Principal Findings: LIF and its subunit receptor LIFRa expression levels were evaluated by immunohistochemistry and western blot in fetal rat lungs of different gestational ages, ranging from 13.5 to 21.5 days post-conception. Throughout all gestational ages studied, LIF was constitutively expressed in pulmonary epithelium, whereas LIFRa was first mainly expressed in the mesenchyme, but after pseudoglandular stage it was also observed in epithelial cells. These results point to a LIF epithelium-mesenchyme cross-talk, which is known to be important for lung branching process. Regarding functional studies, fetal lung explants were cultured with increasing doses of LIF or LIF neutralizing antibodies during 4 days. MAPK, AKT, and STAT3 phosphorylation in the treated lung explants was analyzed. LIF supplementation significantly inhibited lung growth in spite of an increase in p44/42 phosphorylation. On the other hand, LIF inhibition significantly stimulated lung growth via p38 and Akt pathways
    corecore