2,103 research outputs found

    The 43GHz SiO maser in the circumstellar envelope of the AGB star R Cassiopeiae

    Full text link
    We present multi-epoch, total intensity, high-resolution images of 43GHz, v=1, J=1-0 SiO maser emission toward the Mira variable R Cas. In total we have 23 epochs of data for R Cas at approximate monthly intervals over an optical pulsation phase range from 0.158 to 1.78. These maps show a ring-like distribution of the maser features in a shell, which is assumed to be centred on the star at a radius of 1.6 to 2.3 times the stellar radii. It is clear from these images that the maser emission is significantly extended around the star. At some epochs a faint outer arc can be seen at 2.2 stellar radii. The intensity of the emission waxes and wanes during the stellar phase. Some maser features are seen infalling as well as outflowing. We have made initial comparisons of our data with models by Gray et. al. (2009).Comment: 12 pages, 14 figure

    High Curie temperature Mn 5 Ge 3 thin films produced by non-diffusive reaction

    Full text link
    Polycrystalline Mn 5 Ge 3 thin films were produced on SiO 2 using magnetron sputtering and reactive diffusion (RD) or non-diffusive reaction (NDR). In situ X-ray diffraction and atomic force microscopy were used to determine the layer structures, and magnetic force microscopy, superconducting quantum interference device and ferromagnetic resonance were used to determine their magnetic properties. RD-mediated layers exhibit similar magnetic properties as MBE-grown monocrystalline Mn 5 Ge 3 thin films, while NDR-mediated layers show magnetic properties similar to monocrystalline C-doped Mn 5 Ge 3 C x thin films with 0.1x0.2.0.1 \leq x \leq 0.2. NDR appears as a CMOS-compatible efficient method to produce good magnetic quality high-curie temperature Mn 5 Ge 3 thin films

    Polarization morphology of SiO masers in the circumstellar envelope of the AGB star R Cassiopeiae

    Full text link
    Silicon monoxide maser emission has been detected in the circumstellar envelopes of many evolved stars in various vibrationally-excited rotational transitions. It is considered a good tracer of the wind dynamics close to the photosphere of the star. We have investigated the polarization morphology in the circumstellar envelope of an AGB star, R Cas. We mapped the linear and circular polarization of SiO masers in the v=1, J=1-0 transition. The linear polarization is typically a few tens of percent while the circular polarization is a few percent. The fractional polarization tends to be higher for emission of lower total intensity. We found that, in some isolated features the fractional linear polarization appears to exceed 100%. We found the Faraday rotation is not negligible but is ~15 deg., which could produce small scale structure in polarized emission whilst total intensity is smoother and partly resolved out. The polarization angles vary considerably from feature to feature but there is a tendency to favour the directions parallel or perpendicular to the radial direction with respect to the star. In some features, the polarization angle abruptly flips 90 deg. We found that our data are in the regime where the model of Goldreich et al (1973) can be applied and the polarization angle flip is caused when the magnetic field is at close to 55 deg. to the line of sight. The polarization angle configuration is consistent with a radial magnetic field although other configurations are not excluded.Comment: 14 pages, 15 figures. Accepted for publication in MNRA

    Overlap properties of geometric expanders

    Get PDF
    The {\em overlap number} of a finite (d+1)(d+1)-uniform hypergraph HH is defined as the largest constant c(H)(0,1]c(H)\in (0,1] such that no matter how we map the vertices of HH into Rd\R^d, there is a point covered by at least a c(H)c(H)-fraction of the simplices induced by the images of its hyperedges. In~\cite{Gro2}, motivated by the search for an analogue of the notion of graph expansion for higher dimensional simplicial complexes, it was asked whether or not there exists a sequence {Hn}n=1\{H_n\}_{n=1}^\infty of arbitrarily large (d+1)(d+1)-uniform hypergraphs with bounded degree, for which infn1c(Hn)>0\inf_{n\ge 1} c(H_n)>0. Using both random methods and explicit constructions, we answer this question positively by constructing infinite families of (d+1)(d+1)-uniform hypergraphs with bounded degree such that their overlap numbers are bounded from below by a positive constant c=c(d)c=c(d). We also show that, for every dd, the best value of the constant c=c(d)c=c(d) that can be achieved by such a construction is asymptotically equal to the limit of the overlap numbers of the complete (d+1)(d+1)-uniform hypergraphs with nn vertices, as nn\rightarrow\infty. For the proof of the latter statement, we establish the following geometric partitioning result of independent interest. For any dd and any ϵ>0\epsilon>0, there exists K=K(ϵ,d)d+1K=K(\epsilon,d)\ge d+1 satisfying the following condition. For any kKk\ge K, for any point qRdq \in \mathbb{R}^d and for any finite Borel measure μ\mu on Rd\mathbb{R}^d with respect to which every hyperplane has measure 00, there is a partition Rd=A1Ak\mathbb{R}^d=A_1 \cup \ldots \cup A_{k} into kk measurable parts of equal measure such that all but at most an ϵ\epsilon-fraction of the (d+1)(d+1)-tuples Ai1,,Aid+1A_{i_1},\ldots,A_{i_{d+1}} have the property that either all simplices with one vertex in each AijA_{i_j} contain qq or none of these simplices contain qq

    High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator

    Full text link
    The discovery of the quantum Hall (QH) effect led to the realization of a topological electronic state with dissipationless currents circulating in one direction along the edge of a two dimensional electron layer under a strong magnetic field. The quantum anomalous Hall (QAH) effect shares a similar physical phenomenon as the QH effect, whereas its physical origin relies on the intrinsic spin-orbit coupling and ferromagnetism.Here we report the experimental observation of the QAH state in V-doped (Bi,Sb)2Te3 films with the zero-field longitudinal resistance down to 0.00013+-0.00007h/e2 (~3.35+-1.76 ohm), Hall conductance reaching 0.9998+-0.0006e2/h and the Hall angle becoming as high as 89.993+-0.004degree at T=25mK. Further advantage of this system comes from the fact that it is a hard ferromagnet with a large coercive field (Hc>1.0T) and a relative high Curie temperature. This realization of robust QAH state in hard FMTIs is a major step towards dissipationless electronic applications without external fields.Comment: 16 pages, 4 figures, this is the final version, accepted by Nature Materials, forthcomin

    Seminal plasma and prostaglandin E2 up-regulate fibroblast growth factor 2 expression in endometrial adenocarcinoma cells via E-series prostanoid-2 receptor-mediated transactivation of the epidermal growth factor receptor and extracellular signal-regulated kinase pathway

    Get PDF
    We report a multiwavelength (X-ray, ultraviolet/optical/infrared, radio) analysis of the relativistic tidal disruption event candidate Sw J2058+05 from 3 months to 3 yr post-discovery in order to study its properties and compare its behavior with that of Sw J1644+57. Our main results are as follows. (1) The long-term X-ray light curve of Sw J2058+05 shows a remarkably similar trend to that of Sw J1644+57. After a prolonged power-law decay, the X-ray flux drops off rapidly by a factor of 160\gtrsim 160 within a span of Δ\Deltatt/tt \le 0.95. Associating this sudden decline with the transition from super-Eddington to sub-Eddington accretion, we estimate the black hole mass to be in the range of 104610^{4-6} M_{\odot}. (2) We detect rapid (500\lesssim 500 s) X-ray variability before the dropoff, suggesting that, even at late times, the X-rays originate from close to the black hole (ruling out a forward-shock origin). (3) We confirm using HST and VLBA astrometry that the location of the source coincides with the galaxy's center to within 400\lesssim 400 pc (in projection). (4) We modeled Sw J2058+05's ultraviolet/optical/infrared spectral energy distribution with a single-temperature blackbody and find that while the radius remains more or less constant at a value of 63.4±4.563.4 \pm 4.5 AU (1015\sim 10^{15} cm) at all times during the outburst, the blackbody temperature drops significantly from \sim 30,000 K at early times to a value of \sim 15,000 K at late times (before the X-ray dropoff). Our results strengthen Sw J2058+05's interpretation as a tidal disruption event similar to Sw J1644+57.Comment: Replaced with the published version of the manuscrip

    First Passage Distributions in a Collective Model of Anomalous Diffusion with Tunable Exponent

    Full text link
    We consider a model system in which anomalous diffusion is generated by superposition of underlying linear modes with a broad range of relaxation times. In the language of Gaussian polymers, our model corresponds to Rouse (Fourier) modes whose friction coefficients scale as wavenumber to the power 2z2-z. A single (tagged) monomer then executes subdiffusion over a broad range of time scales, and its mean square displacement increases as tαt^\alpha with α=1/z\alpha=1/z. To demonstrate non-trivial aspects of the model, we numerically study the absorption of the tagged particle in one dimension near an absorbing boundary or in the interval between two such boundaries. We obtain absorption probability densities as a function of time, as well as the position-dependent distribution for unabsorbed particles, at several values of α\alpha. Each of these properties has features characterized by exponents that depend on α\alpha. Characteristic distributions found for different values of α\alpha have similar qualitative features, but are not simply related quantitatively. Comparison of the motion of translocation coordinate of a polymer moving through a pore in a membrane with the diffusing tagged monomer with identical α\alpha also reveals quantitative differences.Comment: LaTeX, 10 pages, 8 eps figure

    Large Fluctuations and Fixation in Evolutionary Games

    Get PDF
    We study large fluctuations in evolutionary games belonging to the coordination and anti-coordination classes. The dynamics of these games, modeling cooperation dilemmas, is characterized by a coexistence fixed point separating two absorbing states. We are particularly interested in the problem of fixation that refers to the possibility that a few mutants take over the entire population. Here, the fixation phenomenon is induced by large fluctuations and is investigated by a semi-classical WKB (Wentzel-Kramers-Brillouin) theory generalized to treat stochastic systems possessing multiple absorbing states. Importantly, this method allows us to analyze the combined influence of selection and random fluctuations on the evolutionary dynamics \textit{beyond} the weak selection limit often considered in previous works. We accurately compute, including pre-exponential factors, the probability distribution function in the long-lived coexistence state and the mean fixation time necessary for a few mutants to take over the entire population in anti-coordination games, and also the fixation probability in the coordination class. Our analytical results compare excellently with extensive numerical simulations. Furthermore, we demonstrate that our treatment is superior to the Fokker-Planck approximation when the selection intensity is finite.Comment: 17 pages, 10 figures, to appear in JSTA

    The Moduli Space and M(atrix) Theory of 9d N=1 Backgrounds of M/String Theory

    Get PDF
    We discuss the moduli space of nine dimensional N=1 supersymmetric compactifications of M theory / string theory with reduced rank (rank 10 or rank 2), exhibiting how all the different theories (including M theory compactified on a Klein bottle and on a Mobius strip, the Dabholkar-Park background, CHL strings and asymmetric orbifolds of type II strings on a circle) fit together, and what are the weakly coupled descriptions in different regions of the moduli space. We argue that there are two disconnected components in the moduli space of theories with rank 2. We analyze in detail the limits of the M theory compactifications on a Klein bottle and on a Mobius strip which naively give type IIA string theory with an uncharged orientifold 8-plane carrying discrete RR flux. In order to consistently describe these limits we conjecture that this orientifold non-perturbatively splits into a D8-brane and an orientifold plane of charge (-1) which sits at infinite coupling. We construct the M(atrix) theory for M theory on a Klein bottle (and the theories related to it), which is given by a 2+1 dimensional gauge theory with a varying gauge coupling compactified on a cylinder with specific boundary conditions. We also clarify the construction of the M(atrix) theory for backgrounds of rank 18, including the heterotic string on a circle.Comment: 43 pages, 7 figures, JHEP format. v3: typos correcte
    corecore