770 research outputs found

    Mapping compositional and particle size variations across Silver Lake Playa: Relevance to analyses of Mars TIR data

    Get PDF
    The high spectral and spatial resolution thermal infrared (TIR) data to be acquired from the upcoming Mars Observer-Thermal Emission Spectra (TES) mission will map the composition and texture of the Martian sediments. To prepare for these data, portions of two remote sensing experiments were conducted to test procedures for extracting surface property information from TIR data. Reported here is the continuing analysis of Thermal Infrared Multispectral Scanner (TIMS) data, field emission spectra, laboratory Fourier Transform Infrared (FTIR) reflectance spectra, and field observations with respect to the physical characteristics (composition, emissivity, etc.) of Silver Lake playa in southern California

    The planetary data system educational CD-ROM

    Get PDF
    The Planetary Data System (PDS) is producing a special educational CD-ROM that contains samples of PDS datasets and is expected to be released in 1993. The CD-ROM will provide university-level instructors with PDS-compatible materials and information that can be used to construct student problem sets using real datasets. The main purposes of the CD-ROM are to facilitate wide use of planetary data and to introduce a large community to the PDS. To meet these objectives the Educational CD-ROM will also contain software to manipulate the data, background discussions about scientific questions that can be addressed with the data, and a suite of exercises that illustrate analysis techniques. Students will also be introduced to the SPICE concept, which is a new way of maintaining geometry and instrument information. The exercises will be presented at the freshman through graduate student levels. With simplification, some of the material should also be of use at the high school level

    Internal Characteristics of Phobos and Deimos from Spectral Properties and Density: Relationship to Landforms and Comparison with Asteroids

    Get PDF
    Compositional interpretations of new spectral measurements of Phobos and Deimos from Mars Express/OMEGA and MRO/CRISM and density measurements from encounters by multiple spacecraft support refined estimates of the moons' porosity and internal structure. Phobos' estimated macroporosity of 12-20% is consistent with a fractured but coherent interior; Deimos' estimated macroporosity of 23-44% is more consistent with a loosely consolidated interior. These internal differences are reflected in differences in surface morphology: Phobos exhibits a globally coherent pattern of grooves, whereas Deimos has a surface dominated instead by fragmental debris. Comparison with other asteroids .110 km in diameter shows that this correspondence between landforms and inferred internal structure is part of a pervasive pattern: asteroids interpreted to have coherent interiors exhibit pervasive, organized ridge or groove systems, whereas loosely consolidated asteroids have landforms dominated by fragmental debris and/or retain craters >1.3 body radii in diameter suggesting a porous, compressible interior

    Modeling the Mutualistic Interactions between Tubeworms and Microbial Consortia

    Get PDF
    The deep-sea vestimentiferan tubeworm Lamellibrachia luymesi forms large aggregations at hydrocarbon seeps in the Gulf of Mexico that may persist for over 250 y. Here, we present the results of a diagenetic model in which tubeworm aggregation persistence is achieved through augmentation of the supply of sulfate to hydrocarbon seep sediments. In the model, L. luymesi releases the sulfate generated by its internal, chemoautotrophic, sulfide-oxidizing symbionts through posterior root-like extensions of its body. The sulfate fuels sulfate reduction, commonly coupled to anaerobic methane oxidation and hydrocarbon degradation by bacterial–archaeal consortia. If sulfate is released by the tubeworms, sulfide generation mainly by hydrocarbon degradation is sufficient to support moderate-sized aggregations of L. luymesi for hundreds of years. The results of this model expand our concept of the potential benefits derived from complex interspecific relationships, in this case involving members of all three domains of life

    Spectral, mineralogical, and geochemical variations across Home Plate, Gusev Crater, Mars indicate high and low temperature alteration

    Get PDF
    Over the last ~ 3 years in Gusev Crater, Mars, the Spirit rover observed coherent variations in color, mineralogy, and geochemistry across Home Plate, an ~ 80 m-diameter outcrop of basaltic tephra. Observations of Home Plate from orbit and from the summit of Husband Hill reveal clear differences in visible/near-infrared (VNIR) colors between its eastern and western regions that are consistent with mineralogical compositions indicated by Mössbauer spectrometer (MB) and by Miniature Thermal Emission Spectrometer (Mini-TES). Pyroxene and magnetite dominate the east side, while olivine, nanophase Fe oxide (npOx) and glass are more abundant on the western side. Alpha Particle X-Ray Spectrometer (APXS) observations reveal that eastern Home Plate has higher Si/Mg, Al, Zn, Ni, and K, while Cl and Br are higher in the west. We propose that these variations are the result of two distinct alteration regimes that may or may not be temporally related: a localized, higher temperature recrystallization and alteration of the east side of Home Plate and lower temperature alteration of the western side that produced npOx

    Midinfrared third-harmonic generation from macroscopically aligned ultralong single-wall carbon nanotubes

    Get PDF
    We report the observation of strong third-harmonic generation from a macroscopic array of aligned ultralong single-wall carbon nanotubes (SWCNTs)with intensemidinfrared radiation. Through power-dependent experiments, we determined the absolute value of the third-order nonlinear optical susceptibility !(3) of our SWCNT film to be 5.53 × 10−12 esu, three orders of magnitude larger than that of the fused silica reference we used. Taking account of the filling factor of 8.75% for our SWCNT film, we estimate a !(3) of 6.32 × 10−11 esu for a fully dense film. Furthermore, through polarization-dependent experiments, we extracted all the nonzero elements of the !(3) tensor, determining the magnitude of the weaker tensor elements to be #1/6 of that of the dominant !(3) zzzz component

    Retrieval of Compositional End-Members From Mars Exploration Rover Opportunity Observations in a Soil-Filled Fracture in Marathon Valley, Endeavour Crater Rim

    Get PDF
    The Opportunity rover investigated a gentle swale on the rim of Endeavour crater called Marathon Valley where a series of bright planar outcrops are cut into polygons by fractures. A wheel scuff performed on one of the soil‐filled fracture zones revealed the presence of three end‐members identified on the basis of Pancam multispectral imaging observations covering ~0.4 to 1 μm: red and dark pebbles, and a bright soil clod. Multiple overlapping Alpha Particle X‐ray Spectrometer (APXS) measurements were collected on three targets within the scuff zone. The field of view of each APXS measurement contained various proportions of the Pancam‐based end‐members. Application of a log maximum likelihood method for retrieving the composition of the end‐members using the 10 APXS measurements shows that the dark pebble end‐member is compositionally similar to average Mars soil, with slightly elevated S and Fe. In contrast, the red pebble end‐member exhibits enrichments in Al and Si and is depleted in Fe and Mg relative to average Mars soil. The soil clod end‐member is enriched in Mg, S, and Ni. Thermodynamic modeling of the soil clod end‐member composition indicates a dominance of sulfate minerals. We hypothesize that acidic fluids in fractures leached and oxidized the basaltic host rock, forming the red pebbles, and then evaporated to leave behind sulfate‐cemented soil
    corecore