40 research outputs found

    Differences in Activities of Antioxidant Superoxide Dismutase, Glutathione Peroxidase and Prooxidant Xanthine Oxidoreductase/Xanthine Oxidase in the Normal Corneal Epithelium of Various Mammals

    Get PDF
    Summary Under normal conditions, antioxidants at the corneal surface are balanced with the production of reactive oxygen species without any toxic effects. Danger from oxidative stress appears when natural antioxidants are overwhelmed leading to antioxidant/prooxidant imbalance. The aim of the present study was to examine the activities of enzymes contributing to the antioxidant/prooxidant balance in normal corneal epithelium of various mammals. The enzyme activities of antioxidant superoxide dismutase and glutathione peroxidase, as well as prooxidant xanthine oxidoreductase/xanthine oxidase were examined using biochemical methods. Results show that superoxide dismutase activity is high in rabbits and guinea pigs, whereas in pigs the activity is low and in cows it is nearly absent. In contrast, glutathione peroxidase activity is high in cows, pigs and rabbits, whereas in guinea pigs the activity is low. As far as prooxidant enzymes are concerned, elevated xanthine oxidoreductase/xanthine oxidase activities were found in rabbits, lower activities in guinea pigs, very low activity in cows and no activity in pigs. In conclusion, the above results demonstrate inter-species variations in activities of enzymes participating in antioxidant/prooxidant balance in the corneal epithelium. It is suggested that the levels of antioxidant and prooxidant enzymes studied in the corneal epithelium might be associated with the diurnal or nocturnal activity of animals. UV rays decompose hydrogen peroxide to damaging hydroxyl radicals and perhaps for this reason large animals with diurnal activity (cow, pig) require more effective peroxide removal (high glutathione peroxidase activity) together with the suppression of peroxide production (low superoxide dismutase activity, low xanthine oxidoreductase activity)

    Complete Genome Sequence of Treponema paraluiscuniculi, Strain Cuniculi A: The Loss of Infectivity to Humans Is Associated with Genome Decay

    Get PDF
    Treponema paraluiscuniculi is the causative agent of rabbit venereal spirochetosis. It is not infectious to humans, although its genome structure is very closely related to other pathogenic Treponema species including Treponema pallidum subspecies pallidum, the etiological agent of syphilis. In this study, the genome sequence of Treponema paraluiscuniculi, strain Cuniculi A, was determined by a combination of several high-throughput sequencing strategies. Whereas the overall size (1,133,390 bp), arrangement, and gene content of the Cuniculi A genome closely resembled those of the T. pallidum genome, the T. paraluiscuniculi genome contained a markedly higher number of pseudogenes and gene fragments (51). In addition to pseudogenes, 33 divergent genes were also found in the T. paraluiscuniculi genome. A set of 32 (out of 84) affected genes encoded proteins of known or predicted function in the Nichols genome. These proteins included virulence factors, gene regulators and components of DNA repair and recombination. The majority (52 or 61.9%) of the Cuniculi A pseudogenes and divergent genes were of unknown function. Our results indicate that T. paraluiscuniculi has evolved from a T. pallidum-like ancestor and adapted to a specialized host-associated niche (rabbits) during loss of infectivity to humans. The genes that are inactivated or altered in T. paraluiscuniculi are candidates for virulence factors important in the infectivity and pathogenesis of T. pallidum subspecies

    Whole Genome Sequences of Three Treponema pallidum ssp. pertenue Strains: Yaws and Syphilis Treponemes Differ in Less than 0.2% of the Genome Sequence

    Get PDF
    Spirochete Treponema pallidum ssp. pertenue (TPE) is the causative agent of yaws while strains of Treponema pallidum ssp. pallidum (TPA) cause syphilis. Both yaws and syphilis are distinguished on the basis of epidemiological characteristics and clinical symptoms. Neither treponeme can reproduce outside the host organism, which precludes the use of standard molecular biology techniques used to study cultivable pathogens. In this study, we determined high quality whole genome sequences of TPE strains and compared them to known genetic information for T. pallidum ssp. pallidum strains. The genome structure was identical in all three TPE strains and also between TPA and TPE strains. The TPE genome length ranged between 1,139,330 bp and 1,139,744 bp. The overall sequence identity between TPA and TPE genomes was 99.8%, indicating that the two pathogens are extremely closely related. A set of 34 TPE genes (3.5%) encoded proteins containing six or more amino acid replacements or other major sequence changes. These genes more often belonged to the group of genes with predicted virulence and unknown functions suggesting their involvement in infection differences between yaws and syphilis

    Genomic epidemiology of syphilis reveals independent emergence of macrolide resistance across multiple circulating lineages.

    Get PDF
    Syphilis is a sexually transmitted infection caused by Treponema pallidum subspecies pallidum and may lead to severe complications. Recent years have seen striking increases in syphilis in many countries. Previous analyses have suggested one lineage of syphilis, SS14, may have expanded recently, indicating emergence of a single pandemic azithromycin-resistant cluster. Here we use direct sequencing of T. pallidum combined with phylogenomic analyses to show that both SS14- and Nichols-lineages are simultaneously circulating in clinically relevant populations in multiple countries. We correlate the appearance of genotypic macrolide resistance with multiple independently evolved SS14 sub-lineages and show that genotypically resistant and sensitive sub-lineages are spreading contemporaneously. These findings inform our understanding of the current syphilis epidemic by demonstrating how macrolide resistance evolves in Treponema subspecies and provide a warning on broader issues of antimicrobial resistance

    Long Lamai community ICT4D E‐commerce system modelling: an agent oriented role‐based approach

    Get PDF
    This paper presents the post‐mortem report upon completion of the Long Lamai e‐commerce development project. Some weaknesses with regards to the current software modelling approach are identified and an alternative role‐based approach is proposed. We argue that the existing software modelling technique is not suitable for modelling, making it difficult to establish a good contract between stakeholders causing delays in the project delivery. The role‐based approach is able to explicitly highlight the responsibilities among stakeholders, while also forming the contract agreement among them leading towards sustainable ICT4D

    Characterizing the Syphilis-Causing Treponema pallidum ssp. pallidum Proteome Using Complementary Mass Spectrometry

    Get PDF
    YesBackground. The spirochete bacterium Treponema pallidum ssp. pallidum is the etiological agent of syphilis, a chronic multistage disease. Little is known about the global T. pallidum proteome, therefore mass spectrometry studies are needed to bring insights into pathogenicity and protein expression profiles during infection. Methodology/Principal Findings. To better understand the T. pallidum proteome profile during infection, we studied T. pallidum ssp. pallidum DAL-1 strain bacteria isolated from rabbits using complementary mass spectrometry techniques, including multidimensional peptide separation and protein identification via matrix-assisted laser desorption ionization-time of flight (MALDI-TOF/TOF) and electrospray ionization (ESI-LTQ-Orbitrap) tandem mass spectrometry. A total of 6033 peptides were detected, corresponding to 557 unique T. pallidum proteins at a high level of confidence, representing 54% of the predicted proteome. A previous gel-based T. pallidum MS proteome study detected 58 of these proteins. One hundred fourteen of the detected proteins were previously annotated as hypothetical or uncharacterized proteins; this is the first account of 106 of these proteins at the protein level. Detected proteins were characterized according to their predicted biological function and localization; half were allocated into a wide range of functional categories. Proteins annotated as potential membrane proteins and proteins with unclear functional annotations were subjected to an additional bioinformatics pipeline analysis to facilitate further characterization. A total of 116 potential membrane proteins were identified, of which 16 have evidence supporting outer membrane localization. We found 8/12 proteins related to the paralogous tpr gene family: TprB, TprC/D, TprE, TprG, TprH, TprI and TprJ. Protein abundance was semi-quantified using label-free spectral counting methods. A low correlation (r = 0.26) was found between previous microarray signal data and protein abundance. Conclusions. This is the most comprehensive description of the global T. pallidum proteome to date. These data provide valuable insights into in vivo T. pallidum protein expression, paving the way for improved understanding of the pathogenicity of this enigmatic organism.This work was supported by the grants from the Flanders Research Foundation, SOFI-B Grant to CRK, http://www.fwo.be/, a Public Health Service Grant from the National Institutes of Health to CEC, (grant # AI-051334), https://www.nih.gov/ and a grant from the Grant Agency of the Czech Republic to DS and MS (P302/12/0574, GP14-29596P), https:// gacr.cz/

    2004a) UV Rays, the prooxidant/antioxidant imbalance in the cornea and oxidative eye damage

    No full text
    Summary In this minireview, the factors involved in the development of corneal injury due to an increased amount of UVB rays are summarized. Experimental studies have shown that an increased number of UVB rays leads to a profound decrease in corneal antioxidants (high molecular weight, antioxidant enzymes as well as low molecular weight, mainly ascorbic acid) so that a prooxidant/antioxidant imbalance appears. The decrease of corneal antioxidant protective mechanisms results in oxidative injury of the cornea and causes damage of the inner parts of the eye by UVB rays and by reactive oxygen species generated by them

    Co-Cultivation of Human Aortic Smooth Muscle Cells With Epicardial Adipocytes Affects Their Proliferation Rate

    No full text
    Summary The abnormal proliferation of vascular smooth muscle cells (VSMC) is thought to play a role in the pathogenesis of atherosclerosis. Adipocytes produce several bioactive paracrine substances that can affect the growth and migration of VSMCs. Our study focuses on the direct effect of the bioactive substances in conditioned media (CM) that was obtained by incubation with primary adipocyte-derived cell lines, including cell lines derived from both preadipocytes and from more mature cells, on the proliferation rate of human aortic smooth muscle cells (HAoSMCs). We used a Luminex assay to measure the adipokine content of the CM and showed that there was a highe
    corecore