441 research outputs found

    Numerical Studies on the Magnetism of Fe-Ni-Mn Alloys in the Invar Region

    Full text link
    By means of self-consistent semi-empirical LCAO calculations we study the itinerant magnetism of (Fe_{0.65}Ni_{0.35})_{1-y} Mn_y alloys for y between 0 and 0.22 at T=0 K, neglecting only the transverse spin components. We find that the magnetic behaviour is quite complicated on a local scale. In addition to ferromagnetic behaviour, also metastable spin-glass-like configurations are found. In the same approach, using a direct numerical calculation by the Kubo-Formalism without any fit parameters, we also calculate the electrical conductance in the magnetic state and find that the yy-dependence observed in the experiments is well reproduced by our calculations, except of an overall factor of rougly 5, by which our resistivities are too large.Comment: 12 pages (Latex, to be applied 2 times) + 13 figures (eps-files

    Ab-initio-calculations of the GMR-effect in Fe/V multilayers

    Full text link
    In a self-consistent semi-empirical numerical approach based on ab-initio-calculations for small samples, we evaluate the GMR effect for disordered (001)-(3--Fe/3--V)_\infty multilayers by means of a Kubo formalism. We consider four different types of disorder arrangements: In case (i) and (ii), the disorder consists in the random interchange of some Fe and V atoms, respectively, at interface layers; in case (iii) in the formation of small groups of three substitutional Fe atoms in a V interface layer and a similar V group in a Fe layer at a different interface; and for case (iv) in the substitution of some V atoms in the innermost V layers by Fe. For cases (i) and (ii), depending on the distribution of the impurities, the GMR effect is enhanced or reduced by increasing disorder, in case (iii) the GMR effect is highest, whereas finally, in case (iv), a negative GMR is obtained (''inverse GMR'').Comment: LaTex, 30 pages, including 16 drawings; to appear in JMM

    Torus invariant divisors

    Full text link
    Using the language of polyhedral divisors and divisorial fans we describe invariant divisors on normal varieties X which admit an effective codimension one torus action. In this picture X is given by a divisorial fan on a smooth projective curve Y. Cartier divisors on X can be described by piecewise affine functions h on the divisorial fan S whereas Weil divisors correspond to certain zero and one dimensional faces of it. Furthermore we provide descriptions of the divisor class group and the canonical divisor. Global sections of line bundles O(D_h) will be determined by a subset of a weight polytope associated to h, and global sections of specific line bundles on the underlying curve Y.Comment: 16 pages; 5 pictures; small changes in the layout, further typos remove

    The pancreas responds to remote damage and systemic stress by secretion of the pancreatic secretory proteins PSP/regI and PAP/regIII.

    Get PDF
    In patients with infection and sepsis serum levels of Pancreatic Stone protein/regenerating protein I (PSP) are highly elevated. The origin of PSP during these conditions is presumably the pancreas, however, an intestinal origin cannot be excluded. Similarly, pancreatitis-associated protein (PAP) was identified in the pancreas. These proteins were also localized in intestinal organs. Here we aim to elucidate the bio-distribution of PSP and PAP in animal models of sepsis and in healthy humans. PSP and PAP responded to remote lesions in rats although the pancreatic response was much more pronounced than the intestinal. Tissue distribution of PSP demonstrated a 100-fold higher content in the pancreas compared to any other organ while PAP was most abundant in the small intestine. Both proteins responded to CLP or sham operation in the pancreas. PSP also increased in the intestine during CLP. The distribution of PSP and PAP in human tissue mirrored the distribution in the murine models. Distribution of PSP and PAP was visualized by immunohistochemistry. Rats and mice underwent midline laparotomies followed by mobilization of tissue and incision of the pancreatic duct or duodenum. Standard cecum-ligation-puncture (CLP) procedures or sham laparotomies were performed. Human tissue extracts were analyzed for PSP and PAP. The pancreas reacts to remote lesions and septic insults in mice and rats with increased PSP synthesis, while PAP is selectively responsive to septic events. Furthermore, our results suggest that serum PSP in septic patients is predominantly derived through an acute phase response of the pancreas

    Verteilte Simulationen auf einem Grid

    Get PDF

    Prevalence of tick-borne encephalitis virus in ticks from southern Korea

    Get PDF
    The prevalence of tick-borne encephalitis virus (TBEV) in southern Korea was determined by collecting ticks using tick drags. A total of 4,077 of 6,788 ticks collected were pooled (649 pools) according to collection site, species, and developmental stage and assayed for TBEV. The TBEV protein E and NS5 gene fragments were detected using RT-nested PCR in six pools of nymphs collected from Jeju Island (2,491 ticks). The minimum field detection rates for TBEV were 0.17% and 0.14% for Haemaphysalis longicornis and Haemayphysalis flava nymphs, respectively. The 252 bp NS5 and 477 bp protein E gene amplicons were sequenced. Phylogenetic analysis showed that the NS5 and protein E genes of the Jeju strain were clustered with Western subtype (98.0% and 99.4% identity, respectively). The Western subtype of TBEV is endemic in Korea, including Jeju Island. The study of vector and zoonotic host susceptibility to TBEV is required to better understand its potential impact on public health

    Cavity-enhanced high harmonic generation for XUV time-resolved ARPES

    Full text link
    With its direct correspondence to electronic structure, angle-resolved photoemission spectroscopy (ARPES) is a ubiquitous tool for the study of solids. When extended to the temporal domain, time-resolved (TR)-ARPES offers the potential to move beyond equilibrium properties, exploring both the unoccupied electronic structure as well as its dynamical response under ultrafast perturbation. Historically, ultrafast extreme ultraviolet (XUV) sources employing high-order harmonic generation (HHG) have required compromises that make it challenging to achieve a high energy resolution - which is highly desirable for many TR-ARPES studies - while producing high photon energies and a high photon flux. We address this challenge by performing HHG inside a femtosecond enhancement cavity (fsEC), realizing a practical source for TR-ARPES that achieves a flux of over 1011^{11} photons/s delivered to the sample, operates over a range of 8-40 eV with a repetition rate of 60 MHz. This source enables TR-ARPES studies with a temporal and energy resolution of 190 fs and 22 meV, respectively. To characterize the system, we perform ARPES measurements of polycrystalline Au and MoTe2_2, as well as TR-ARPES studies on graphite.Comment: 11 pages, 5 figure
    corecore