21 research outputs found

    Dietary pesticide chlorpyrifos-methyl affects arachidonic acid metabolism including phospholipid remodeling in Atlantic salmon (Salmo salar L.)

    Get PDF
    The pesticide chlorpyrifos-methyl (CLP-m) has been identified in plant ingredients intended for aquaculture feed production. To investigate systemic effects of CLP-m with emphasis on lipid metabolism, post-smolt Atlantic salmon were fed in duplicate (n = 2) either diets with no CLP-m (Control) or CLP-m at different concentrations (0.1, 1.0 or 8.0 mg kg(-1)) for a total of 67 days (Low, Medium, High). Fish in all groups almost doubled their weight during the feeding trial from 262 +/- 26 g (mean +/- SD) to 465 +/- 64 g (overall mean), with no significant effects on any growth parameters. There was a significant dose-dependent inhibition of plasma cholinesterase activity (BuChE) after 67 days. The CLP-m biotransformation metabolite, TCP was detected in liver and bile, with low levels of the parent compound in the organs. Spleen somatic index decreased significantly with increasing dietary CLP-m intake. Hematocrit (%) decreased linearly with increasing dietary exposure to CLP-m after 30 days of exposure, but this decrease was less at 67 days of exposure. A significantly reduced content of arachidonic acid (ARA 20:4n - 6), accompanied by a significantly increased content of the saturated fatty acid, palmitic acid (PA 16:0), was observed in liver phospholipids (PLs) with increasing dietary content of CLP-m. Major effects were seen on the PL classes in liver which showed a significantly decreased absolute content, possibly indicating inhibition of PL remodeling pathways or other membrane perturbation effects from CLP-m exposure. In conclusion, this study shows that the pesticide CLP-m is a relatively potent toxicant in Atlantic salmon, especially affecting liver PLs and ARA metabolism

    Circulating Brain-Injury Markers After Surgery for Craniosynostosis

    Get PDF
    Objective: Historically, there have been few quantitative methods for effectively evaluating outcomes after surgery for craniosynostosis. In this prospective study, we assessed a novel approach for detecting possible postsurgery brain injury in patients with craniosynostosis. Methods: We included consecutive patients operated on for sagittal (pi-plasty or craniotomy combined with springs) or metopic (frontal remodeling) synostosis at the Craniofacial Unit at Sahlgrenska University Hospital, Gothenburg, Sweden, from January 2019 to September 2020. Plasma concentrations of the brain-injury biomarkers neurofilament light (NfL), glial fibrillary acidic protein (GFAP), and tau were measured immediately before induction of anesthesia, immediately before and after surgery, and on the first and the third postoperative days using single-molecule array assays. Results: Of the 74 patients included, 44 underwent craniotomy combined with springs for sagittal synostosis, 10 underwent pi-plasty for sagittal synostosis, and 20 underwent frontal remodeling for metopic synostosis. Compared with baseline, GFAP level showed a maximal significant increase at day 1 after frontal remodeling for metopic synostosis and pi-plasty (P = 0.0004 and P = 0.003, respectively). By contrast, craniotomy combined with springs for sagittal synostosis showed no increase in GFAP. For neurofilament light, we found a maximal significant increase at day 3 after surgery for all procedures, with significantly higher levels observed after frontal remodeling and pi-plasty compared with craniotomy combined with springs (P < 0.001). Conclusions: These represent the first results showing significantly increased plasma levels of brain-injury biomarkers after surgery for craniosynostosis. Furthermore, we found that more extensive cranial vault procedures resulted in higher levels of these biomarkers relative to less extensive procedures

    Checklists in the operating room: Help or hurdle? A qualitative study on health workers' experiences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Checklists have been used extensively as a cognitive aid in aviation; now, they are being introduced in many areas of medicine. Although few would dispute the positive effects of checklists, little is known about the process of introducing this tool into the health care environment. In 2008, a pre-induction checklist was implemented in our anaesthetic department; in this study, we explored the nurses' and physicians' acceptance and experiences with this checklist.</p> <p>Method</p> <p>Focus group interviews were conducted with a purposeful sample of checklist users (nurses and physicians) from the Department of Anaesthesia and Intensive Care in a tertiary teaching hospital. The interviews were analysed qualitatively using systematic text condensation.</p> <p>Results</p> <p>Users reported that checklist use could divert attention away from the patient and that it influenced workflow and doctor-nurse cooperation. They described senior consultants as both sceptical and supportive; a head physician with a positive attitude was considered crucial for successful implementation. The checklist improved confidence in unfamiliar contexts and was used in some situations for which it was not intended. It also revealed insufficient equipment standardisation.</p> <p>Conclusion</p> <p>Our findings suggest several issues and actions that may be important to consider during checklist use and implementation.</p

    Toxicological effect of single contaminants and contaminant mixtures associated with plant ingredients in novel salmon feeds

    Get PDF
    Increasing use of plant feed ingredients may introduce contaminants not previously associated with farming of salmonids, such as pesticides and PAHs from environmental sources or from thermal processing of oil seeds. To screen for interaction effects of contaminants newly introduced in salmon feeds, Atlantic salmon primary hepatocytes were used. The xCELLigence cytotoxicity system was used to select optimal dosages of the PAHs benzo(a)pyrene and phenanthrene, the pesticides chlorpyrifos and endosulfan, and combinations of these. NMR and MS metabolic profiling and microarray transcriptomic profiling was used to identify novel biomarkers. Lipidomic and transcriptomic profiling suggested perturbation of lipid metabolism, as well as endocrine disruption. The pesticides gave the strongest responses, despite having less effect on cell viability than the PAHs. Only weak molecular responses were detected in PAH-exposed hepatocytes. Chlorpyrifos suppressed the synthesis of unsaturated fatty acids. Endosulfan affected steroid hormone synthesis, while benzo(a)pyrene disturbed vitamin D3 metabolism. The primary mixture effect was additive, although at high concentrations the pesticides acted in a synergistic fashion to decrease cell viability and down-regulate CYP3A and FABP4 transcription. This work highlights the usefulness of 'omics techniques and multivariate data analysis to investigate interactions within mixtures of contaminants with different modes of action

    Dietary pesticide chlorpyrifos-methyl affects arachidonic acid metabolism including phospholipid remodeling in Atlantic salmon (Salmo salar L.)

    No full text
    The pesticide chlorpyrifos-methyl (CLP-m) has been identified in plant ingredients intended for aquaculture feed production. To investigate systemic effects of CLP-m with emphasis on lipid metabolism, post-smolt Atlantic salmon were fed in duplicate (n = 2) either diets with no CLP-m (Control) or CLP-m at different concentrations (0.1, 1.0 or 8.0 mg kg(-1)) for a total of 67 days (Low, Medium, High). Fish in all groups almost doubled their weight during the feeding trial from 262 +/- 26 g (mean +/- SD) to 465 +/- 64 g (overall mean), with no significant effects on any growth parameters. There was a significant dose-dependent inhibition of plasma cholinesterase activity (BuChE) after 67 days. The CLP-m biotransformation metabolite, TCP was detected in liver and bile, with low levels of the parent compound in the organs. Spleen somatic index decreased significantly with increasing dietary CLP-m intake. Hematocrit (%) decreased linearly with increasing dietary exposure to CLP-m after 30 days of exposure, but this decrease was less at 67 days of exposure. A significantly reduced content of arachidonic acid (ARA 20:4n - 6), accompanied by a significantly increased content of the saturated fatty acid, palmitic acid (PA 16:0), was observed in liver phospholipids (PLs) with increasing dietary content of CLP-m. Major effects were seen on the PL classes in liver which showed a significantly decreased absolute content, possibly indicating inhibition of PL remodeling pathways or other membrane perturbation effects from CLP-m exposure. In conclusion, this study shows that the pesticide CLP-m is a relatively potent toxicant in Atlantic salmon, especially affecting liver PLs and ARA metabolism
    corecore