44 research outputs found
Fremont-Smith: The Foundations and Government: State and Federal Law and Supervision
Digimergo är en digitalisering av Emergo Train System, ett system där personal inom räddningstjänst kan öva på olika katastrofscenarion. För att göra Digimergo användbart behövdes ytterligare programvara: ett administrationsverktyg till övningar och en scenarioeditor. I det programvaruutvecklingsprojekt som denna rapport behandlar har ny programvara utvecklats och integrerats med det ursprungliga Digimergosystemet. I den här rapporten diskuteras vilka risker som existerar när ny funktionalitet skall läggas till ett gammalt projekt samt hur dessa risker kan minimeras. Rapporten undersöker också vilka utvecklingsmetoder som lämpar sig i projekt där ny funktionalitet ska läggas till befintliga system. Resultatet visar att den största risken med att utöka befintliga projekt är att underskatta tiden som krävs för att sätta sig in i projektet i fråga. Det mest effektiva sättet att minimera risken för detta är att mycket tidigt studera det tidigare arbetet och utbilda projektmedlemmarna i det gamla systemet. Ett annat angreppssätt är att välja en metod som är flexibel när det kommer till nya risker eller ändringar i projektets plan, förslagsvis iterativa metoder
Haplotype-resolved genome of heterozygous African cassava cultivar TMEB117 (Manihot esculenta)
Cassava (Manihot esculenta Crantz) is a vital tropical root crop providing essential dietary energy to over 800 million people in tropical and subtropical regions. As a climate-resilient crop, its significance grows as the human population expands. However, yield improvement faces challenges from biotic and abiotic stress and limited breeding. Advanced sequencing and assembly techniques enabled the generation of a highly accurate, nearly complete, haplotype-resolved genome of the African cassava cultivar TMEB117. It is the most accurate cassava genome sequence to date with a base-level accuracy of QV > 64, N50 > 35 Mbp, and 98.9% BUSCO completeness. Over 60% of the genome comprises repetitive elements. We predicted over 45,000 gene models for both haplotypes. This achievement offers valuable insights into the heterozygosity genome organization of the cassava genome, with improved accuracy, completeness, and phased genomes. Due to its high susceptibility to African Cassava Mosaic Virus (ACMV) infections compared to other cassava varieties, TMEB117 provides an ideal reference for studying virus resistance mechanisms, including epigenetic variations and smallRNA expressions
Where does all the phosphorus go? Mass balance modelling of phosphorus in the Swedish long-term soil fertility experiments
To gain insights into phosphorus (P) dynamics in soils and the ability to predict soil responses to varying fertilizer inputs, mass balance models prove to be valuable tools. In this study, a new dynamic mass balance model, PBalD8, was used to describe the change in extracted P in the A horizon of soils subjected to diverse fertilizer treatments over a period of 50 to 60 years in five soil fertility experiments. The model employed a Freundlich equation to describe soil-solution partitioning of P and assumed that acid-lactate-extractable P represented a labile pool of P in instant equilibrium with soil solution P. Additionally, oxalate-extractable inorganic P was presumed to comprise the sum of the labile and stable pools of P, with mass flux to and from the latter described by Fick's first law. The model was evaluated using results from extractions and P K-edge XANES spectroscopy. Notably, organic P, as revealed by P K-edge XANES, did not substantially contribute to long-term changes in soil P content and was therefore excluded from consideration. In general, the model offered reasonable fits to the extracted P concentrations. However, for the P-depleted treatments, a prerequisite was that the P removal through harvest was lower compared to measurements. Conversely, in three of the soils, the modelled fertilizer inputs needed to be reduced to 70 % to 85 % of the known additions. These discrepancies may be attributed to the involvement of deeper soil horizons, including deep crop uptake and mixing with lower soil layers, although other factors such as lateral dispersion and inaccuracies in estimating applied fertilizers cannot be discounted. These results underscore the necessity of gaining a more comprehensive understanding of how deeper soil horizons influence P mass balances in agricultural soils. In one of the soils, Fja center dot rdingslo center dot v, P K-edge XANES results demonstrated the formation of calcium phosphate over time in the highest fertilization treatment, consistent with the model. Additionally, in two soils, Kungsa center dot ngen and the P-depleted Vreta Kloster soil, the model predicted a significant contribution from mineral weathering. However, the PBalD8 model also projected higher P leaching rates than those observed, suggesting that the model may not fully capture this P output term
Urbanization causes biotic homogenization of woodland bird communities at multiple spatial scales
Abstract Urbanization is a major contributor to biodiversity declines. However, studies assessing effects of urban landscapes per se (i.e., disentangled from focal habitat effects) on biodiversity across spatial scales are lacking. Understanding such scale-dependent effects is fundamental to preserve habitats along an urbanization gradient in a way that maximizes overall biodiversity. We investigated the impact of landscape urbanization on communities of woodland-breeding bird species in individual (local scale) and across multiple (regional scale) cities, while controlling for the quality of sampled habitats (woodlands). We conducted bird point counts and habitat quality mapping of trees, dead wood and shrubs in 459 woodlands along an urban to rural urbanization gradient in 32 cities in Sweden. Responses to urbanization were measured as local and regional total diversity (?), average site diversity (α) and diversity between sites (?). We also assessed effects on individual species and to what extent dissimilarities in species composition along the urbanization gradient were driven by species nestedness or turnover. We found that landscape urbanization had a negative impact on ?-, α- and ?-diversity irrespective of spatial scale, both regarding all woodland-breeding species and red-listed species. At the regional scale, dissimilarities in species composition between urbanization levels were due to nestedness, i.e., species were lost with increased landscape urbanization without being replaced. In contrast, dissimilarities at the local scale were mostly due to species turnover. Because there was no difference in habitat quality among woodlands across the urbanization gradient, we conclude that landscape urbanization as such systematically causes poorer and more homogeneous bird communities in adjacent natural habitats. However, the high local turnover and the fact that several species benefited from urbanization demonstrates that natural habitats along the entire urbanization gradient are needed to maintain maximally diverse local bird communities.Urbanization is a major contributor to biodiversity declines. However, studies assessing effects of urban landscapes per se (i.e., disentangled from focal habitat effects) on biodiversity across spatial scales are lacking. Understanding such scale-dependent effects is fundamental to preserve habitats along an urbanization gradient in a way that maximizes overall biodiversity. We investigated the impact of landscape urbanization on communities of woodland-breeding bird species in individual (local scale) and across multiple (regional scale) cities, while controlling for the quality of sampled habitats (woodlands). We conducted bird point counts and habitat quality mapping of trees, dead wood, and shrubs in 459 woodlands along an urban to rural urbanization gradient in 32 cities in Sweden. Responses to urbanization were measured as local and regional total diversity (gamma), average site diversity (alpha), and diversity between sites (beta). We also assessed effects on individual species and to what extent dissimilarities in species composition along the urbanization gradient were driven by species nestedness or turnover. We found that landscape urbanization had a negative impact on gamma-, alpha-, and beta-diversity irrespective of spatial scale, both regarding all woodland-breeding species and red-listed species. At the regional scale, dissimilarities in species composition between urbanization levels were due to nestedness, that is, species were lost with increased landscape urbanization without being replaced. In contrast, dissimilarities at the local scale were mostly due to species turnover. Because there was no difference in habitat quality among woodlands across the urbanization gradient, we conclude that landscape urbanization as such systematically causes poorer and more homogeneous bird communities in adjacent natural habitats. However, the high local turnover and the fact that several species benefited from urbanization demonstrates that natural habitats along the entire urbanization gradient are needed to maintain maximally diverse local bird communities.Peer reviewe
Urbanization causes biotic homogenization of woodland bird communities at multiple spatial scales
Urbanization is a major contributor to biodiversity declines. However, studies assessing effects of urban landscapes per se (i.e., disentangled from focal habitat effects) on biodiversity across spatial scales are lacking. Understanding such scale-dependent effects is fundamental to preserve habitats along an urbanization gradient in a way that maximizes overall biodiversity. We investigated the impact of landscape urbanization on communities of woodland-breeding bird species in individual (local scale) and across multiple (regional scale) cities, while controlling for the quality of sampled habitats (woodlands). We conducted bird point counts and habitat quality mapping of trees, dead wood, and shrubs in 459 woodlands along an urban to rural urbanization gradient in 32 cities in Sweden. Responses to urbanization were measured as local and regional total diversity (gamma), average site diversity (alpha), and diversity between sites (beta). We also assessed effects on individual species and to what extent dissimilarities in species composition along the urbanization gradient were driven by species nestedness or turnover. We found that landscape urbanization had a negative impact on gamma-, alpha-, and beta-diversity irrespective of spatial scale, both regarding all woodland-breeding species and red-listed species. At the regional scale, dissimilarities in species composition between urbanization levels were due to nestedness, that is, species were lost with increased landscape urbanization without being replaced. In contrast, dissimilarities at the local scale were mostly due to species turnover. Because there was no difference in habitat quality among woodlands across the urbanization gradient, we conclude that landscape urbanization as such systematically causes poorer and more homogeneous bird communities in adjacent natural habitats. However, the high local turnover and the fact that several species benefited from urbanization demonstrates that natural habitats along the entire urbanization gradient are needed to maintain maximally diverse local bird communities
Coulomb Excitation of Proton-rich N = 80 Isotones at HIE-ISOLDE
A projectile Coulomb-excitation experiment was performed at the radioactive ion beam facility HIE-ISOLDE at CERN. The radioactive ¹⁴⁰Nd and ¹⁴²Sm ions were post accelerated to the energy of 4.62 MeV/A and impinged on a 1.45 mg/cm²-thin ²⁰⁸Pb target. The γ rays depopulating the Coulomb-excited states were recorded by the HPGe-array MINIBALL. The scattered charged particles were detected by a double-sided silicon strip detector in forward direction. Experimental γ-ray intensities were used for the determination of electromagnetic transition matrix elements. Preliminary results for the reduced transition strength of the B(M1;23+→21+)=0.35(19)μN2 of ¹⁴⁰Nd and a first estimation for ¹⁴²Sm have been deduced using the Coulomb-excitation calculation software GOSIA. The 2³₊ states of ¹⁴⁰Nd and ¹⁴²Sm show indications of being the main fragment of the proton-neutron mixed-symmetry 2⁺₁,ms state
Hur upplever instrumentallärarna på Kulturskolan sin arbetssituation?
Examensarbete 15 hp, lärarexamen</p