9 research outputs found

    Development of SCAR marker linked to stem canker resistance gene in soybean

    No full text
    Stem canker caused by the fungus Diaporthe phaseolorum f. sp. meridionalis is a disease that limits soybeancultivation. Phenotypic evaluations aiming at disease resistance require labor-intensive processes, as for instance handlingand transport of phytopathogens. The use of DNA markers in the selective procedures eases certain phases, besides beingpractical, safe and reliable. A RAPD fragment of 588pb was identified among bulks of resistant and susceptible plants in thecross BR92-15454 (R) x IAC-11 (S). Through co-segregation, the distance between the resistance locus and the fragment wasestimated at 7.4 ± 2.1 cM, with a Lodmax. of 23.072 (first year) and at 6.0 ± 3.4 cM with a Lodmax. of 7.806 (second year). Thefragment was converted into a SCAR marker and digested with enzyme Hinc II, which made the classification in homozygousresistant, heterozygous resistant and susceptible plants possible. This SCAR marker is suitable for use in the improvementprogram conducted in Jaboticabal

    Development of SCAR marker linked to stem canker resistance gene in soybean

    No full text
    Stem canker caused by the fungus Diaporthe phaseolorum f. sp. meridionalis is a disease that limits soybean cultivation. Phenotypic evaluations aiming at disease resistance require labor-intensive processes, as for instance handling and transport of phytopathogens. The use of DNA markers in the selective procedures eases certain phases, besides being practical, safe and reliable. A RAPD fragment of 588pb was identified among bulks of resistant and susceptible plants in the cross BR92-15454 (R) x IAC-11 (S). Through co-segregation, the distance between the resistance locus and the fragment was estimated at 7.4 ± 2.1 cM, with a Lodmax. of 23.072 (first year) and at 6.0 ± 3.4 cM with a Lodmax. of 7.806 (second year). The fragment was converted into a SCAR marker and digested with enzyme Hinc II, which made the classification in homozygous resistant, heterozygous resistant and susceptible plants possible. This SCAR marker is suitable for use in the improvement program conducted in Jaboticabal

    Técnicas multivariadas na determinação da diversidade genética em gergelim usando marcadores RAPD

    Get PDF
    O objetivo deste trabalho foi comparar diferentes técnicas multivariadas na caracterização de 35 genótipos de gergelim mediante 769 marcadores RAPD. As distâncias genéticas foram obtidas pelo complemento aritmético do coeficiente de Jaccard e agrupadas pelos métodos hierárquicos do vizinho mais próximo, do vizinho mais distante, das médias aritméticas não ponderadas (UPGMA), do método de otimização de Tocher e análises de coordenadas principais. O agrupamento dos genótipos foi alterado em função dos diferentes métodos usados. Adotando-se a mesma distância genética (0,36) como valor de corte, diferenciaram-se quatro grupos no método do vizinho mais próximo, 13 para o vizinho mais distante, 11 no UPGMA e quatro no Tocher. Entre os métodos hierárquicos, o UPGMA apresentou o melhor ajuste das distâncias originais e estimadas (CCC = 0,89). As análises das coordenadas principais confirmaram a baixa diversidade existente entre os genótipos. A maior divergência ocorreu entre as cultivares Seridó 1 e Arawaca 4, e a menor, entre os genótipos VCR-101 e GP-3314. As três primeiras coordenadas principais contabilizaram 35,13% do total da variabilidade, e 18 autovalores foram necessários para explicar 81% da variação genética. Os métodos UPGMA, de otimização de Tocher, e as análises de coordenadas principais são complementares na formação dos grupos.The objective of this work was to compare different multivariate techniques in the characterization of 35 sesame genotypes using 769 RAPD makers. Genetic distances were obtained from the arithmetic complement of the Jaccard coefficient, and were evaluated by single linkage, complete linkage and unweighted arithmetic average (UPGMA) agglomerative methods, Tocher optimization method and principal coordinate analysis. The clustering structure was altered by the different methods. Adopting the same genetic distance (0.36) as value of cut, four groups were discriminated in single linkage, 13 in complete linkage and 11 in UPGMA; the Tocher's optimization methods formed four groups. Among the hierarchical clustering methods, UPGMA showed the best adjust for estimated and originals distances (CCC = 0.89). Principal coordinates analyses confirmed the low diversity among genotypes. The highest divergence occurred between Seridó 1 and Arawaca 4 cultivars, and the minor, between VCR-101 and GP-3314 genotypes. The three first principal coordinates responded for 35.13% of the variability, and 18 autovalues were necessary to explain 81% of the genetic variation. UPGMA, Tochers' optimization and the principal coordinates analyses are complementary in the clusters formation
    corecore