12 research outputs found

    Subcellular localization of microcystin in the liver and the gonads of medaka fish acutely exposed to microcystin-LR

    Get PDF
    International audienceAmong the diverse toxic components produced by cyanobacteria, microcystins (MCs) are one of the most toxic and notorious cyanotoxin groups. Besides their potent hepatotoxicity, MCs have been revealed to induce potential reproductive toxicity in various animal studies. However, little is still known regarding the distribution of MCs in the reproductive organ, which could directly affect reproductive cells. In order to respond to this question, an acute study was conducted in adult medaka fish (model animal) gavaged with 10 ÎŒg.g −1 body weight of pure MC-LR. The histological and immunohistochemical examinations reveal an intense distribution of MC-LR within hepatocytes along with a severe liver lesion in the toxin-treated female and male fish. Besides being accumulated in the hepatocytes, MC-LR was also found in the connective tissue of the ovary and the testis, as well as in oocytes and degenerative spermatocyte-like structures but not spermatocytes. Both liver and gonad play important roles in the reproductive process of oviparous vertebrates. This observation constitutes the first observation of the presence of MC-LR in reproductive cells (female, oocytes) of a vertebrate model with in vivo study. Our results, which provide intracellular localization of MC-LR in the gonad, advance our understanding of the potential reproductive toxicity of MC-LR in fish

    Specificity of the metabolic signatures of fish from cyanobacteria rich lakes

    Get PDF
    International audienceThe liver metabolomes of fish from cyanobacterial-dominated ponds were investigated. Cyanobacterial metabolites were only be detected in cyanobacterial dominated ponds. The metabolomes of the 2 fish species exhibit similar correlation with cyanobacteria occurrence. Correlations between the levels of some metabolites and phycocyanin or pH were observed. a b s t r a c t With the increasing impact of the global warming, occurrences of cyanobacterial blooms in aquatic ecosystems are becoming a main worldwide ecological concern. Due to their capacity to produce potential toxic metabolites, interactions between the cyanobacteria, their cyanotoxins and the surrounding freshwater organisms have been investigated during the last past years. Non-targeted metabolomic analyses have the powerful capacity to study simultaneously a high number of metabolites and thus to investigate in depth the molecular signatures between various organisms encountering different environmental scenario, and potentially facing cyanobacterial blooms. In this way, the liver metabolomes of two fish species (Perca fluviatilis and Lepomis gibbosus) colonizing various peri-urban lakes of theÎle-de-France region displaying high biomass of cyanobacteria, or not, were investigated. The fish metabolome hydrophilic fraction was analyzed by 1 H NMR analysis coupled with Batman peak treatment for the quantification and the annotation attempt of the metabolites. The results suggest that similar metabolome profiles occur in both fish species, for individuals collected from cyanobacterial blooming lakes compared to organism from non-cyanobacterial dominant environments. Overall, such environmental metabolomic pilot study provides new research perspectives in ecology and ecotoxicology fields, and may notably provide new information concerning the cyanobacteria/fish eco-toxicological interactions

    Global Metabolomic Characterizations of Microcystis spp. Highlights Clonal Diversity in Natural Bloom-Forming Populations and Expands Metabolite Structural Diversity

    Get PDF
    Cyanobacteria are photosynthetic prokaryotes capable of synthesizing a large variety of secondary metabolites that exhibit significant bioactivity or toxicity. Microcystis constitutes one of the most common cyanobacterial genera, forming the intensive blooms that nowadays arise in freshwater ecosystems worldwide. Species in this genus can produce numerous cyanotoxins (i.e., toxic cyanobacterial metabolites), which can be harmful to human health and aquatic organisms. To better understand variations in cyanotoxin production between clones of Microcystis species, we investigated the diversity of 24 strains isolated from the same blooms or from different populations in various geographical areas. Strains were compared by genotyping with 16S-ITS fragment sequencing and metabolite chemotyping using LC ESI-qTOF mass spectrometry. While genotyping can help to discriminate among different species, the global metabolome analysis revealed clearly discriminating molecular profiles among strains. These profiles could be clustered primarily according to their global metabolite content, then according to their genotype, and finally according to their sampling location. A global molecular network of all metabolites produced by Microcystis species highlights the production of a wide set of chemically diverse metabolites, including a few microcystins, many aeruginosins, microginins, cyanopeptolins, and anabaenopeptins, together with a large set of unknown molecules. These components, which constitute the molecular biodiversity of Microcystis species, still need to be investigated in terms of their structure and potential bioactivites (e.g., toxicity)

    Effect of two TiO2 nanoparticles on the growth of unicellular green algae using the OECD 201 test guideline : influence of the exposure system

    No full text
    This work aimed at assessing the influence of different exposure systems to perform the commonly used OECD 201 freshwater algal growth inhibition test in the context of nanoparticles hazard assessment. Two distinct TiO2 nanoparticles were considered and three different exposure systems were investigated: Erlenmeyers flasks and 24-well microplates (both using an orbital shake system), and an alternative system using cylindrical vials and magnetic stirring. All three systems are in accordance with the OECD 201 test guideline recommendations. We concluded that the exposure systems applied to achieve the test can substantially affect the ecotoxicological results and the subsequent calculated ECx. The selected systems influenced both the interaction between algal cells and TiO2 nanoparticles as well as the growth inhibition recorded. Disparities in ecotoxicity relative to the TiO2 nanoparticles tested were also observed and are finally discussed

    Effect of two TiO 2

    No full text

    Insights into the Diversity of Secondary Metabolites of Planktothrix Using a Biphasic Approach Combining Global Genomics and Metabolomics

    Get PDF
    International audienceCyanobacteria are an ancient lineage of slow-growing photosynthetic bacteria and a prolific source of natural products with diverse chemical structures and potent biological activities and toxicities. The chemical identification of these compounds remains a major bottleneck. Strategies that can prioritize the most prolific strains and novel compounds are of great interest. Here, we combine chemical analysis and genomics to investigate the chemodiversity of secondary metabolites based on their pattern of distribution within some cyanobacteria. Planktothrix being a cyanobacterial genus known to form blooms worldwide and to produce a broad spectrum of toxins and other bioactive compounds, we applied this combined approach on four closely related strains of Planktothrix. The chemical diversity of the metabolites produced by the four strains was evaluated using an untargeted metabolomics strategy with high-resolution LC-MS. Metabolite profiles were correlated with the potential of metabolite production identified by genomics for the different strains. Although, the Planktothrix strains present a global similarity in terms of a biosynthetic cluster gene for microcystin, aeruginosin, and prenylagaramide for example, we found remarkable strain-specific chemodiversity. Only few of the chemical features were common to the four studied strains. Additionally, the MS/MS data were analyzed using Global Natural Products Social Molecular Networking (GNPS) to identify molecular families of the same biosynthetic origin. In conclusion, we depict an efficient, integrative strategy for elucidating the chemical diversity of a given genus and link the data obtained from analytical chemistry to biosynthetic genes of cyanobacteria. Key Contribution: The chemodiversity of Planktothrix metabolites revealed by genome mining and molecular networking

    Metabolic changes in Medaka fish induced by cyanobacterial exposures in mesocosms: an integrative approach combining proteomic and metabolomic analyses

    No full text
    Author Correction: The original version of this Article contained an error in the spelling of the author Giovanni Chiappetta, which was incorrectly given as Giovanni Chiapetta. This error has now been corrected in the HTML and PDF versions of the Article, and in the accompanying Supplementary Information document. https://doi.org/10.1038/s41598-018-20638-0International audienceCyanobacterial blooms pose serious threats to aquatic organisms and strongly impact the functioning of aquatic ecosystems. Due to their ability to produce a wide range of potentially bioactive secondary metabolites, so called cyanotoxins, cyanobacteria have been extensively studied in the past decades. Proteomic and metabolomic analyses provide a unique opportunity to evaluate the global response of hundreds of proteins and metabolites at a glance. In this study, we provide the first combined utilization of these methods targeted to identify the response of fish to bloom-forming cyanobacteria. Medaka fish (Oryzias latipes) were exposed for 96 hours either to a MC-producing or to a non-MC-producing strain of Microcystis aeruginosa and cellular, proteome and metabolome changes following exposure to cyanobacteria were characterized in the fish livers. The results suggest that a short-term exposure to cyanobacteria, producing or not MCs, induces sex-dependent molecular changes in medaka fish, without causing any cellular alterations. Globally, molecular entities involved in stress response, lipid metabolism and developmental processes exhibit the most contrasted changes following a cyanobacterial exposure. Moreover, it appears that proteomic and metabolomic analyses are useful tools to verify previous information and to additionally bring new horizons concerning molecular effects of cyanobacteria on fish
    corecore