66 research outputs found

    Aspergillus PCR in Bronchoalveolar Lavage Fluid for the Diagnosis and Prognosis of Aspergillosis in Patients With Hematological and Non-hematological Conditions

    Get PDF
    Objectives: We evaluated the usefulness of an Aspergillus fumigatus quantitative PCR assay performed in bronchoalveolar lavage fluid (BAL) for the diagnosis and prognosis of both invasive and non-invasive aspergillosis.Methods: This 4-year retrospective study involved 613 at-risk patients who had either hematological disorders or other immunosuppressive conditions, notably solid organ transplants. Thirty-five patients had proven/probable aspergillosis and thirteen had chronic non-invasive aspergillosis. We compared PCR, galactomannan index and mycological analysis of BAL.Results: For invasive aspergillosis (IA), PCR performed in BAL yielded 88.6% sensitivity and 95.5% specificity. Comparatively, galactomannan index and mycological examination yielded only 56.3 and 63.6% sensitivity and 97.6 and 94.5% specificity, respectively. Considering the 13 chronic aspergillosis cases, PCR, galactomannan index and mycological examination yielded 76.9, 15.4, and 84.6% sensitivity and 92.2, 94.9, and 93% specificity, respectively. Fungal load in BAL evaluated by PCR was able to discriminate between aspergillosis and contamination, but not between invasive and non-invasive forms. Finally, fungal load was predictive of 90-day mortality, with 23.1% mortality for patients with less than 500 copies/mL versus 68.4% for patients above that cut-off (p < 0.05).Conclusion: Our results indicate that Aspergillus PCR in BAL is of particular interest for both the diagnosis and the prognosis of IA. It is likewise an interesting tool for the diagnosis of non-invasive forms

    High Rate of Inattentional Deafness in Simulated Air Traffic Control Tasks

    Get PDF
    The Air Traffic Control (ATC) environment is complex and safety-critical; operators work in dynamic situations and must make high-risk decisions under stress and temporal pressure. The high perceptual load involved in ATC means that controllers’ attention must be shared between several subtasks, with few or no remaining attentional capacity for processing information that is not related directly to the focal task. In this kind of situation, the likelihood of a controller failing to become aware of an auditory alarm, i.e. inattentional deafness, is high. We designed an ecological ATC thanks to the simulation environment called the “LABY” microworld. Twenty participants were required to guide one (low cognitive load) or two planes (high cognitive load) around a given route, while dealing with visual notifications relating to peripheral aircrafts. During the task, participants were played either standard tones which they were told to ignore, or deviant tones (“the alarm”, probability = 0.20) which they were told to report (20 alarms per scenario). We hypothesized that the detection rate of auditory alarms will decrease with cognitive workload. In order to explore this possibility, Behavioral results showed that 28.8% of alarms were not reported when guiding one plane, and up to 46.2% when guiding two planes (high load). The cognitive load increase led to a reduced visual notification detection rate, but the performance to guiding the central aircrafts was maintained, as well as the reaction times to report auditory alarms when perceived. This high rate of inattentional deafness is essential to further physiological studies on alarm omission in aeronautics, such as ERP or eye movement analysis. Potential applications are related to the integrative online detection and prevention of alarm omission, and the online measurement of workload in ecological situation

    The neuroergonomic evaluation of human machine interface design in air traffic control using behavioral and EEG/ERP measures

    Get PDF
    The Air Traffic Control (ATC) environment is complex and safety-critical. Whilst exchanging information with pilots, controllers must also be alert to visual notifications displayed on the radar screen (e.g., warning which indicates a loss of minimum separation between aircraft). Under the assumption that attentional resources are shared between vision and hearing, the visual interface design may also impact the ability to process these auditory stimuli. Using a simulated ATC task, we compared the behavioral and neural responses to two different visual notification designs—the operational alarm that involves blinking colored “ALRT” displayed around the label of the notified plane (“Color-Blink”), and the more salient alarm involving the same blinking text plus four moving yellow chevrons (“Box-Animation”). Participants performed a concurrent auditory task with the requirement to react to rare pitch tones. P300 from the occurrence of the tones was taken as an indicator of remaining attentional resources. Participants who were presented with the more salient visual design showed better accuracy than the group with the suboptimal operational design. On a physiological level, auditory P300 amplitude in the former group was greater than that observed in the latter group. One potential explanation is that the enhanced visual design freed up attentional resources which, in turn, improved the cerebral processing of the auditory stimuli. These results suggest that P300 amplitude can be used as a valid estimation of the efficiency of interface designs, and of cognitive load more generally

    The gut-lung axis in the CFTR modulator era

    Get PDF
    The advent of CFTR modulators represents a turning point in the history of cystic fibrosis (CF) management, changing profoundly the disease’s clinical course by improving mucosal hydration. Assessing changes in airway and digestive tract microbiomes is of great interest to better understand the mechanisms and to predict disease evolution. Bacterial and fungal dysbiosis have been well documented in patients with CF; yet the impact of CFTR modulators on microbial communities has only been partially deciphered to date. In this review, we aim to summarize the current state of knowledge regarding the impact of CFTR modulators on both pulmonary and digestive microbiomes. Our analysis also covers the inter-organ connections between lung and gut communities, in order to highlight the gut-lung axis involvement in CF pathophysiology and its evolution in the era of novel modulators therapies

    CoCAS: a ChIP-on-chip analysis suite

    Get PDF
    Motivation: High-density tiling microarrays are increasingly used in combination with ChIP assays to study transcriptional regulation. To ease the analysis of the large amounts of data generated by this approach, we have developed ChIP-on-chip Analysis Suite (CoCAS), a standalone software suite which implements optimized ChIP-on-chip data normalization, improved peak detection, as well as quality control reports. Our software allows dye swap, replicate correlation and connects easily with genome browsers and other peak detection algorithms. CoCAS can readily be used on the latest generation of Agilent high-density arrays. Also, the implemented peak detection methods are suitable for other datasets, including ChIP-Seq output

    The First Self-Assembled Trimetallic Lanthanide Helicates Driven by Positive Cooperativity

    Full text link
    The segmental tris-tridentate ligand L7 reacts with stoichiometric quantities of Ln(III) (Ln=La-Lu) in acetonitrile to give the complexes [Ln(2)(L7)(3)](6+) and [Ln(3)(L7)(3)](9+). Formation constants point to negligible size-discriminating effects along the lanthanide series, but Scatchard plots suggest that the self-assembly of the trimetallic triple-stranded helicates [Ln(3)(L7)(3)](9+) is driven to completion by positive cooperativity, despite strong intermetallic electrostatic repulsions. Crystallization provides quantitatively [Ln(3)(L7)(3)](CF(3)SO(3))(9) (Ln=La, Eu, Gd, Tb, Lu) and the X-ray crystal structure of [Eu(3)(L7)(3)](CF(3)SO(3))(9).(CH(3)CN)(9).(H(2)O)(2) (Eu(3)C(216)H(226)N(48)O(35)F(27)S(9), triclinic, P1, Z=2) shows the three ligand strands wrapped around a pseudo-threefold axis defined by the three metal ions rigidly held at about 9 A. Each metal ion is coordinated by nine donor atoms in a pseudo-trigonal prismatic arrangement, but the existence of terminal carboxamide units in the ligand strands differentiates the electronic properties of the terminal and the central metallic sites. Photophysical data confirm that the three coordination sites possess comparable pseudo-trigonal symmetries in the solid state and in solution. High-resolution luminescence analyses evidence a low-lying LMCT state affecting the central EuN(9) site, so that multi-metal-centered luminescence is essentially dominated by the emission from the two terminal EuN(6)O(3) sites in [Eu(3)(L7)(3)](9+). New multicenter equations have been developed for investigating the solution structure of [Ln(3)(L7)(3)](9+) by paramagnetic NMR spectroscopy and linear correlations for Ln=Ce-Tb imply isostructurality for these larger lanthanides. NMR spectra point to the triple helical structure being maintained in solution, but an inversion of the magnitude of the second-rank crystal-field parameters, obtained by LIS analysis, for the LnN(6)O(3) and LnN(9) sites with respect to the parameters extracted for Eu(III) from luminescence data, suggests that the geometry of the central LnN(9) site is somewhat relaxed in solution

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30M⊙M_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Performance of Aspergillus PCR in cerebrospinal fluid for the diagnosis of cerebral aspergillosis

    No full text
    International audienceObjectives: cerebral aspergillosis is a rare but often fatal form of invasive aspergillosis that remains difficult to diagnose. The literature has shown the value of Aspergillus PCR in blood-derived samples for the diagnosis of invasive aspergillosis but provides far less information for cerebrospinal fluid (CSF) in cerebral aspergillosis. Here, we evaluated the usefulness of an Aspergillus PCR assay performed on CSF for the diagnosis of cerebral aspergillosis.Methods: this retrospective study involved 72 patients with suspected cerebral aspergillosis for a total of 88 CSF samples in whom CSF Aspergillus PCR was performed.Results: seventeen patients had proven/probable invasive aspergillosis according to the European Organisation for Research and Treatment of Cancer/Mycoses Study Group (EORTC/MSG) criteria, including twelve cases of proven/probable cerebral aspergillosis. AspergillusPCR in CSF was positive in nine of the twelve patients with cerebral aspergillosis, i.e. 75% sensitivity. In contrast, CSF culture was positive for Aspergillus in only two patients. In the non cerebral aspergillosis group (60 patients), PCR was positive in one patient, i.e., 98.3% specificity. In this particular population of high-risk patients with suspicion of cerebral aspergillosis, the disease incidence was 16.7%. Therefore, the positive and negative predictive values of PCR were 90% and 95.2% respectively.Conclusion: the results of this study indicate that Aspergillus PCR in CSF is an interesting tool that may eliminate the need for cerebral biopsy in patients with suspected cerebral aspergillosis

    Erratum to: Surface functionalization by covalent immobilization of an innovative carvacrol derivative to avoid fungal biofilm formation

    No full text
    International audienceCarvacrol, an aromatic terpenic compound, known to be antimicrobial was grafted onto gold surfaces via two strategies based on newly-synthesized cross-linkers involving either an ester bond which can be cleaved by microbial esterases, or a covalent ether link. Surface functionalizations were characterized at each step by reflection absorption infrared spectroscopy (RAIRS). The two functionalized gold samples both led to a loss of culturability of the yeast Candida albicans, higher than 65%, indicating that the activity of the freshly-designed surfaces was probably due to still covalently immobilized carvacrol. On the contrary, when a phenyl group replaced the terpenic moiety, the yeast culturability increased by about 30%, highlighting the specific activity of carvacrol grafted on the surfaces. Confocal microscopy analyses showed that the mode of action of the functionalized surfaces with the ester or the ether of carvacrol was, in both cases, fungicidal and not anti-adhesive. Finally, this study shows that covalently immobilization of terpenic compounds can be used to design promising antimicrobial surfaces
    • 

    corecore