50 research outputs found

    Concepts relating magnetic interactions, intertwined electronic orders and strongly correlated superconductivity

    Full text link
    Unconventional superconductivity (SC) is said to occur when Cooper pair formation is dominated by repulsive electron-electron interactions, so that the symmetry of the pair wavefunction is other than isotropic s-wave. The strong, on-site, repulsive electron-electron interactions that are the proximate cause of such superconductivity are more typically drivers of commensurate magnetism. Indeed, it is the suppression of commensurate antiferromagnetism (AF) that usually allows this type of unconventional superconductivity to emerge. Importantly, however, intervening between these AF and SC phases, intertwined electronic ordered phases of an unexpected nature are frequently discovered. For this reason, it has been extremely difficult to distinguish the microscopic essence of the correlated superconductivity from the often spectacular phenomenology of the intertwined phases. Here we introduce a model conceptual framework within which to understand the relationship between antiferromagnetic electron-electron interactions, intertwined ordered phases and correlated superconductivity. We demonstrate its effectiveness in simultaneously explaining the consequences of antiferromagnetic interactions for the copper-based, iron-based and heavy-fermion superconductors, as well as for their quite distinct intertwined phases.Comment: Main text + 11 figure

    Discovery of a Cooper-Pair Density Wave State in a Transition-Metal Dichalcogenide

    Full text link
    To search for evidence that Cooper-pair density wave (PDW) states can occur in transition metal dichalcogenides (TMD) we use atomic-resolution scanned Josephson-tunneling microscopy (SJTM). Implementing an innovative SJTM technique, we detect and visualize a PDW state in the canonical TMD NbSe2_2. Although its wavevectors are indistinguishable from those of the preexisting charge density wave (CDW) state, simultaneous atomic-scale imaging of the CDW and PDW demonstrates that their spatial arrangements are incongruent. By contrast, the PDW and the superconductive state are unmistakably coupled, as evidenced by their mutual decay into a superconducting vortex core. Despite the atomic-scale dissimilarity of simultaneous CDW and PDW images, large-scale visualization of their relative phase δΦ(r)\delta\Phi(r) yields a characteristic value ∣δΦ∣∼2π/3|\delta\Phi| \sim 2\pi/3. This reveals an inter-state discommensuration between the CDW and PDW by one crystal unit cell, as the atomic-scale disjunction mechanism. Finally, because many TMDs sustain both CDW and superconducting states, the detection and imaging of a PDW in NbSe2_2 presages abundant new PDW physics

    A Supercooled Spin Liquid State in the Frustrated Pyrochlore Dy2Ti2O7

    Full text link
    A "supercooled" liquid develops when a fluid does not crystallize upon cooling below its ordering temperature. Instead, the microscopic relaxation times diverge so rapidly that, upon further cooling, equilibration eventually becomes impossible and glass formation occurs. Classic supercooled liquids exhibit specific identifiers including microscopic relaxation times diverging on a Vogel-Tammann-Fulcher (VTF) trajectory, a Havriliak-Negami (HN) form for the dielectric function, and a general Kohlrausch-Williams-Watts (KWW) form for time-domain relaxation. Recently, the pyrochlore Dy2Ti2O7 has become of interest because its frustrated magnetic interactions may, in theory, lead to highly exotic magnetic fluids. However, its true magnetic state at low temperatures has proven very difficult to identify unambiguously. Here we introduce high-precision, boundary-free magnetization transport techniques based upon toroidal geometries and gain a fundamentally new understanding of the time- and frequency-dependent magnetization dynamics of Dy2Ti2O7. We demonstrate a virtually universal HN form for the magnetic susceptibility, a general KWW form for the real-time magnetic relaxation, and a divergence of the microscopic magnetic relaxation rates with precisely the VTF trajectory. Low temperature Dy2Ti2O7 therefore exhibits the characteristics of a supercooled magnetic liquid; the consequent implication is that this translationally invariant lattice of strongly correlated spins is evolving towards an unprecedented magnetic glass state, perhaps due to many-body localization of spin.Comment: Version 2 updates: added legend for data in Figures 4A and 4B; corrected equation reference in caption for Figure 4

    Commensurate 4a04a_0 period Charge Density Modulations throughout the Bi2Sr2CaCu2O8+xBi_2Sr_2CaCu_2O_{8+x} Pseudogap Regime

    Full text link
    Theories based upon strong real space (r-space) electron electron interactions have long predicted that unidirectional charge density modulations (CDM) with four unit cell (4a0a_0) periodicity should occur in the hole doped cuprate Mott insulator (MI). Experimentally, however, increasing the hole density p is reported to cause the conventionally defined wavevector QAQ_A of the CDM to evolve continuously as if driven primarily by momentum space (k-space) effects. Here we introduce phase resolved electronic structure visualization for determination of the cuprate CDM wavevector. Remarkably, this new technique reveals a virtually doping independent locking of the local CDM wavevector at ∣Q0∣=2π/4a0|Q_0|=2\pi/4a_0 throughout the underdoped phase diagram of the canonical cuprate Bi2Sr2CaCu2O8Bi_2Sr_2CaCu_2O_8. These observations have significant fundamental consequences because they are orthogonal to a k-space (Fermi surface) based picture of the cuprate CDM but are consistent with strong coupling r-space based theories. Our findings imply that it is the latter that provide the intrinsic organizational principle for the cuprate CDM state

    Imaging Orbital-selective Quasiparticles in the Hund's Metal State of FeSe

    Get PDF
    Strong electronic correlations, emerging from the parent Mott insulator phase, are key to copper-based high temperature superconductivity (HTS). By contrast, the parent phase of iron-based HTS is never a correlated insulator. But this distinction may be deceptive because Fe has five active d-orbitals while Cu has only one. In theory, such orbital multiplicity can generate a Hund's Metal state, in which alignment of the Fe spins suppresses inter-orbital fluctuations producing orbitally selective strong correlations. The spectral weights ZmZ_m of quasiparticles associated with different Fe orbitals m should then be radically different. Here we use quasiparticle scattering interference resolved by orbital content to explore these predictions in FeSe. Signatures of strong, orbitally selective differences of quasiparticle ZmZ_m appear on all detectable bands over a wide energy range. Further, the quasiparticle interference amplitudes reveal that Zxy<Zxz<<ZyzZ_{xy}<Z_{xz}<<Z_{yz}, consistent with earlier orbital-selective Cooper pairing studies. Thus, orbital-selective strong correlations dominate the parent state of iron-based HTS in FeSe.Comment: for movie M1, see http://www.physik.uni-leipzig.de/~kreisel/osqp/M1.mp4, for movie M2, see http://www.physik.uni-leipzig.de/~kreisel/osqp/M2.mp4, for movie M3, see http://www.physik.uni-leipzig.de/~kreisel/osqp/M3.mp4, for movie M4, see http://www.physik.uni-leipzig.de/~kreisel/osqp/M4.mp4, for movie M5, see http://www.physik.uni-leipzig.de/~kreisel/osqp/M5.mp

    Multi-Atom Quasiparticle Scattering Interference for Superconductor Energy-Gap Symmetry Determination

    Get PDF
    Complete theoretical understanding of the most complex superconductors requires a detailed knowledge of the symmetry of the superconducting energy-gap Δkα\Delta_\mathbf{k}^\alpha, for all momenta k\mathbf{k} on the Fermi surface of every band α\alpha. While there are a variety of techniques for determining ∣Δkα∣|\Delta_\mathbf{k}^\alpha|, no general method existed to measure the signed values of Δkα\Delta_\mathbf{k}^\alpha. Recently, however, a new technique based on phase-resolved visualization of superconducting quasiparticle interference (QPI) patterns centered on a single non-magnetic impurity atom, was introduced. In principle, energy-resolved and phase-resolved Fourier analysis of these images identifies wavevectors connecting all k-space regions where Δkα\Delta_\mathbf{k}^\alpha has the same or opposite sign. But use of a single isolated impurity atom, from whose precise location the spatial phase of the scattering interference pattern must be measured is technically difficult. Here we introduce a generalization of this approach for use with multiple impurity atoms, and demonstrate its validity by comparing the Δkα\Delta_\mathbf{k}^\alpha it generates to the Δkα\Delta_\mathbf{k}^\alpha determined from single-atom scattering in FeSe where s±s_{\pm} energy-gap symmetry is established. Finally, to exemplify utility, we use the multi-atom technique on LiFeAs and find scattering interference between the hole-like and electron-like pockets as predicted for Δkα\Delta_\mathbf{k}^\alpha of opposite sign

    Imaging atomic-scale effects of high-energy ion irradiation on superconductivity and vortex pinning in Fe(Se,Te)

    Get PDF
    Maximizing the sustainable supercurrent density, Jc, is crucial to high current applications of superconductivity and, to achieve this, preventing dissipative motion of quantized vortices is key. Irradiation of superconductors with high-energy heavy ions can be used to create nanoscale defects that act as deep pinning potentials for vortices. This approach holds unique promise for high current applications of iron-based superconductors because Jc amplification persists to much higher radiation doses than in cuprate superconductors without significantly altering the superconducting critical temperature. However, for these compounds virtually nothing is known about the atomic scale interplay of the crystal damage from the high-energy ions, the superconducting order parameter, and the vortex pinning processes. Here, we visualize the atomic-scale effects of irradiating FeSexTe1-x with 249 MeV Au ions and find two distinct effects: compact nanometer-sized regions of crystal disruption or 'columnar defects', plus a higher density of single atomic-site 'point' defects probably from secondary scattering. We show directly that the superconducting order is virtually annihilated within the former while suppressed by the latter. Simultaneous atomically-resolved images of the columnar crystal defects, the superconductivity, and the vortex configurations, then reveal how a mixed pinning landscape is created, with the strongest pinning occurring at metallic-core columnar defects and secondary pinning at clusters of pointlike defects, followed by collective pinning at higher fields.Comment: Main text (14 pages, 5 figures) and supplementary information (6 pages, 7 figures
    corecore