4,067 research outputs found

    Thermal switching of the scattering coefficients of terahertz surface plasmon polaritons impinging on a finite array of subwavelength grooves on semiconductor surfaces

    Get PDF
    8 págs.; 8 figs.; 1 tab. ; PACS number s : 73.20.Mf, 78.68. m, 65.40. b, 41.20.JbWe present a theoretical framework that allows us to investigate the scattering of terahertz surface plasmon polaritons (SPP's) by arrays of subwavelength grooves and ridges on semiconductors. The formulation is based on the reduced Rayleigh equation resulting upon imposing an impedance boundary condition. Guided by approximate estimations of the broadening with temperature of the first gap in the SPP dispersion relation in the case of indium antimonide samples with rectangular grooves, numerical calculations are carried out to determine the spectral dependence of all the SPP scattering channels (reflection, transmission, and radiation) in the immediate vicinity of that gap. The thermally induced switching of the SPP reflection and transmission nearby the lower SPP band edge is investigated as a function of groove parameters (size and number); near-field intensity maps are also presented. We thus shed light on the SPP scattering and switching physical mechanisms, thereby providing the most suitable experimental configurations. © 2006 The American Physical Society.This work was supported in part by the Spanish “Ministerio de Educación y Ciencia” Grant Nos. BFM2003-0427 and FIS2004-0108 and “Comunidad de Madrid” Grant MICROSERES and by the European Union Grant HPRN-CT- 2002-00206. The work of J.G.R. was supported by the “Stichting voor Fundamenteel Onderzoek der Materie” FOM, which is financially supported by the “Nederlandse Organisatie voor Wetenschappelijk Onderzoek” NWO.Peer Reviewe

    Broadband telecom transparency of semiconductor-coated metal nanowires: more transparent than glass

    Get PDF
    Metallic nanowires (NW) coated with a high permittivity dielectric are proposed as means to strongly reduce the light scattering of the conducting NW, rendering them transparent at infrared wavelengths of interest in telecommunications. Based on a simple, universal law derived from electrostatics arguments, we find appropriate parameters to reduce the scattering efficiency of hybrid metal-dielectric NW by up to three orders of magnitude as compared with the scattering efficiency of the homogeneous metallic NW. We show that metal@dielectric structures are much more robust against fabrication imperfections than analogous dielectric@metal ones. The bandwidth of the transparent region entirely covers the near IR telecommunications range. Although this effect is optimum at normal incidence and for a given polarization, rigorous theoretical and numerical calculations reveal that transparency is robust against changes in polarization and angle of incidence, and also holds for relatively dense periodic or random arrangements. A wealth of applications based on metal-NWs may benefit from such invisibility

    Reflection and transmission of waves in surface-disordered waveguides

    Get PDF
    The reflection and transmission amplitudes of waves in disordered multimode waveguides are studied by means of numerical simulations based on the invariant embedding equations. In particular, we analyze the influence of surface-type disorder on the behavior of the ensemble average and fluctuations of the reflection and transmission coefficients, reflectance, transmittance, and conductance. Our results show anomalous effects stemming from the combination of mode dispersion and rough surface scattering: For a given waveguide length, the larger the mode transverse momentum is, the more strongly is the mode scattered. These effects manifest themselves in the mode selectivity of the transmission coefficients, anomalous backscattering enhancement, and speckle pattern both in reflection and transmission, reflectance and transmittance, and also in the conductance and its universal fluctuations. It is shown that, in contrast to volume impurities, surface scattering in quasi-one-dimensional structures (waveguides) gives rise to the coexistence of the ballistic, diffusive, and localized regimes within the same sample.Comment: LaTeX (REVTeX), 12 pages with 14 EPS figures (epsf macro), minor change

    Localized magnetic plasmons in all-dielectric \ensuremath{\mu}<0 metastructures

    Get PDF
    Metamaterials are known to exhibit a variety of electromagnetic properties nonexisting in nature. We show that an all-dielectric (nonmagnetic) system consisting of deep-subwavelength, high-permittivity resonant spheres possesses effective negative magnetic permeability (dielectric permittivity being positive and small). Due to the symmetry of the electromagnetic wave equations in classical electrodynamics, localized “magnetic” plasmon resonances can be excited in a metasphere made of such metamaterial. This is theoretically demonstrated by the coupled-dipole approximation and numerically for real spheres, in full agreement with the exact analytical solution for the scattering process by the same metasphere with effective material properties predicted by effective medium theory. The emergence of this phenomenon as a function of structural order within the metastructures is also studied. Universal conditions enabling effective negative magnetic permeability relate subwavelength sphere permittivity and size with critical filling fraction. Our proposal paves the way towards (all-dielectric) magnetic plasmonics, with a wealth of fascinating applications

    Onset of Delocalization in Quasi-1D Waveguides with Correlated Surface Disorder

    Full text link
    We present first analytical results on transport properties of many-mode waveguides with rough surfaces having long-range correlations. We show that propagation of waves through such waveguides reveals a quite unexpected phenomena of a complete transparency for a subset of propagating modes. These modes do not interact with each other and effectively can be described by the theory of 1D transport with correlated disorder. We also found that with a proper choice of model parameters one can arrange a perfect transparency of waveguides inside a given window of energy of incoming waves. The results may be important in view of experimental realizations of a selective transport in application to both waveguides and electron/optic nanodevices.Comment: RevTex, 4 pages, no figures, few references are adde

    Localized magnetic plasmons in all-dielectric μ<0 metastructures

    Get PDF
    6 pags.; 4 figs.; PACS number(s): 41.20.Jb, 42.70.−a, 52.40.Db, 78.67.−n© 2015 American Physical Society. Metamaterials are known to exhibit a variety of electromagnetic properties nonexisting in nature. We show that an all-dielectric (nonmagnetic) system consisting of deep-subwavelength, high-permittivity resonant spheres possesses effective negative magnetic permeability (dielectric permittivity being positive and small). Due to the symmetry of the electromagnetic wave equations in classical electrodynamics, localized >magnetic> plasmon resonances can be excited in a metasphere made of such metamaterial. This is theoretically demonstrated by the coupled-dipole approximation and numerically for real spheres, in full agreement with the exact analytical solution for the scattering process by the same metasphere with effective material properties predicted by effective medium theory. The emergence of this phenomenon as a function of structural order within the metastructures is also studied. Universal conditions enabling effective negative magnetic permeability relate subwavelength sphere permittivity and size with critical filling fraction. Our proposal paves the way towards (all-dielectric) magnetic plasmonics, with a wealth of fascinating applications.This work was supported by the Spanish MINECO (FIS2012- 31070 and FIS2012-36113) and Consolider-Ingenio EMET (CSD2008-00066).Peer Reviewe
    corecore