222 research outputs found
Combining static analysis and profiling for estimating execution times
Effective static analyses have been proposed which infer bounds on the number of resolutions. These have the advantage of being independent from the platform on which the programs are executed and have been shown to be useful in a number of applications, such as granularity control in parallel execution. On the other hand, in distributed computation scenarios where platforms with different capabilities come into play, it is necessary to express costs in metrics that include the characteristics of the platform. In particular, it is specially interesting to be able to infer upper and lower bounds on actual execution times. With this objective in mind, we propose an approach which combines compile-time analysis for cost bounds with a one-time profiling of a given platform in order to determine the valĂşes of certain parameters for that platform. These parameters calibrate a cost model which, from then on, is able to compute statically time bound functions for procedures and to predict with a significant
degree of accuracy the execution times of such procedures in that concrete platform. The approach has been implemented and integrated in the CiaoPP system
Using combined static analysis and profiling for logic program execution time estimation
Predicting statically the running time of programs has many applications ranging from task scheduling in parallel execution to proving the ability of a program to meet strict time constraints. A starting point in order to attack this problem is to infer the computational complexity of such programs (or fragments thereof). This is one of the reasons why the development of static analysis techniques for inferring cost-related properties of programs (usually upper and/or lower bounds of actual costs) has received considerable attention
Combining static analysis and profiling for estimating execution times in logic programs
Effective static analyses have been proposed which allow inferring functions which bound the number of resolutions or reductions. These have the advantage of being independent from the platform on which the programs are executed and such bounds have been shown useful in a number of applications, such as granularity control in parallel
execution. On the other hand, in certain distributed computation scenarios where different platforms come into play, with each platform having different capabilities, it is more interesting to express costs in metrics that include the characteristics of the platform. In particular,
it is specially interesting to be able to infer upper and lower bounds on actual execution time. With this objective in mind, we propose a method which allows inferring upper and lower bounds on the execution times of procedures of a program in a given execution platform. The approach combines compile-time cost bounds analysis with a one-time profiling of the platform in order to determine the values of certain constants for that platform. These constants calibrate a cost model which from then on is able to compute statically time bound functions for procedures and to predict with a significant degree of accuracy the execution times of such procedures in the given platform. The approach has been implemented and integrated in the CiaoPP system
Towards execution time estimation for logic programs via static analysis and profiling
Effective static analyses have been proposed which infer bounds on the number of resolutions or reductions. These have the advantage of being independent from the platform on which the programs are executed and have been shown to be useful in a number of applications, such as granularity control in parallel execution. On the other hand, in distributed computation scenarios where platforms with different capabilities come into play, it is necessary to express costs in metrics that include the characteristics of the platform. In particular, it is specially interesting to be able to infer upper and lower bounds on actual execution times. With this objective in mind, we propose an approach which combines compile-time analysis for cost bounds with a one-time profiling of the platform in order to determine the valĂşes of certain parameters for a given platform. These parameters calĂbrate a cost model which, from then on, is able to compute statically time bound functions for procedures and to predict with a significant degree of accuracy the execution times of such procedures in the given platform. The approach has been implemented and integrated in the CiaoPP system
The ciao approach to the dynamic vs. static language dilemma. Proceedings for the international workshop on scripts to programs
Abstract is not availabl
An overview of Ciao and its design philosophy
We provide an overall description of the Ciao multiparadigm programming sy stem emphasizing some of the novel aspects and motivations behind its design and implementation. An important aspect of Ciao is that, in addition to supporting logic programming (and, in particular, Prolog), it provides
the programmer with a large number of useful features from different programming paradigms and styles, and that the use of each of these features (including those of Prolog) can be turned on and off at will for each program module. Thus, a given module may be using, e.g., higher order functions and constraints, while another module may be using assignment, predicates, Prolog meta-programming,
and concurrency. Furthermore, the language is designed to be extensible in a simple and modular way. Another important aspect of Ciao is its programming environment, which provides a powerful preprocessor (with an associated assertion language) capable of statically flnding non-trivial bugs, verifying that programs comply with speciflcations, and performing many types of optimizations (including automatic parallelization). Such optimizations produce code that is highly competitive with other dynamic languages or, with the (experimental) optimizing compiler, even that of static languages, all while retaining the flexibility and interactive development of a dynamic language. This compilation architecture supports modularity and sepárate compilation throughout. The environment
also includes a powerful auto-documenter and a unit testing framework, both closely integrated with the assertion system. The paper provides an informal overview of the language and program development environment. It aims at illustrating the design philosophy rather than at being exhaustive, which would be impossible in a single journal paper, pointing instead to previous Ciao literature
Effects of multicomponent and power training programs using elastic devices on motor function, body composition, and metabolic, bone and inflammatory profile in older adults
Background: It is needed to understand what type of training strategy can be the most effective for contributing to a healthier, active, and more independent elderly population. Nowadays, there are novel types of training interventions and devices, but only little is known regarding whether these can provoke positive benefits in this target population. Concretely, no evidence has examined the effectiveness of high-speed resistance training and multicomponent training in older adults in respect of not only physical function but also bone, immunity, and metabolic status. Developing an understanding these novel training strategies can ultimately provide a viable alternative to traditional modes of exercise training for a broader range of participants
An overview of ciao and its design philosophy
We provide an overall description of the Ciao multiparadigm programming system emphasizing some of the novel aspects and motivations behind its design and implementation. An important aspect of Ciao is that, in addition to supporting logic programming (and, in particular, Prolog), it provides the programmer with a large number of useful features from different programming paradigms and styles and that the use of each of these features (including those of Prolog) can be turned on and off at will for each program module. Thus,
a given module may be using, e.g., higher order functions and constraints, while another module may be using assignment, predicates, Prolog meta-programming, and concurrency. Furthermore, the language is designed to be extensible in a simple and modular way. Another important aspect of Ciao is its programming environment, which provides a powerful preprocessor (with an associated assertion language) capable of statically finding non-trivial bugs, verifying that programs comply with specifications, and performing many types of optimizations (including automatic parallelization). Such optimizations produce code that is highly competitive with other dynamic languages or, with the (experimental) optimizing compiler, even that of static languages, all while retaining the flexibility and interactive development of a dynamic language. This compilation architecture supports modularity and separate compilation throughout. The environment also includes a powerful autodocumenter and a unit testing framework, both closely integrated with the assertion system. The paper provides an informal overview of the language and program development environment. It aims at illustrating the design philosophy rather than at being exhaustive, which would be impossible in a single journal paper, pointing instead to previous Ciao literature
The ciao system
Abstract is not available
- …