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Motivation. Predicting statically the running time of programs has many ap-
plications ranging from task scheduling in parallel execution to proving the abil-
ity of a program to meet strict time constraints. A starting point in order to 
attack this problem is to infer the computational complexity of such programs 
(or fragments thereof). This is one of the reasons why the development of static 
analysis techniques for inferring cost-related properties of programs (usually up-
per and/or lower bounds of actual costs) has received considerable attention. 

In most cases such cost properties are expressed using platform-independent 
metrics: e.g., the number of resolution steps that a procedure will execute as a 
function of the size of its input data [2, 3]. Although platform-independent costs 
have been shown to be useful in various applications [6,4], in distributed execu­
tion and mobile/pervasive computation scenarios involving hosts with different 
computational power, it becomes necessary to express costs in a way that can be 
instantiated later to different architectures, to accurately reflect execution time. 

Approach. With this objective in mind, we have developed a framework which 
combines cost analysis with profiling techniques in order to infer functions which 
yield bounds on platform-dependent execution times of procedures [7]. In this 
framework, platform-independent cost functions, parameterized by a certain 
number of constants, are inferred for each procedure in a given program. These 
parameters aim at capturing the execution time of certain low-level operations 
on each platform which is assumed to be independent from data size. Their 
selection is, obviously, critical. For each execution platform, the valué of such 
constants is determined experimentally by running a set of synthetic benchmarks 
and measuring their execution time with a profiling toolkit developed in-house. 
Once such constants are determined, they are substituted into the parametric 
cost functions to make it possible to predict, with a certain accuracy, actual 
execution times. 
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Each selection of parameters for the cost functions determines a cost model. 
We have implemented this approach in the CiaoPP system [5], and studied a 
number of cost models in order to determine experimentally which one is more 
precise. In doing this we have taken into account the trade-off between sim-
plicity of the cost model (which affects the efficiency of the cost analysis and 
the complexity of the profiling) and the precisión of their results. The results 
achieved show tha t the combined framework predicts the execution times of pro­
grams with a reasonable degree of accuracy and pavés the way for more accurate 
analyses by including additional parameters. We believe this is an encouraging 
result, since using a one-time profiling for estimating execution times of other, 
unrelated programs is clearly appealing. 

Further Applications. Deducing the expected execution t ime of programs 
in a fully automatic way has applications besides the already mentioned, more 
classical ones. For example, in a Proof-Carrying Code (PCC) framework, pro-
ducers can send a certifícate which includes a platform-independent cost func-
tion. The consumer can then, using a calibrating program, compute the valúes 
for the constants appearing in the parametric cost functions to obtain certified 
platform-dependent cost functions. Another application is found in resource-
oriented specialization, where refined cost models can be used to help in guiding 
specialization by taking into account not only the size of the resulting program, 
but also its expected execution time (and maybe other low-level implementation 
factors). In particular, they can be used to perform self-tuning specialization in 
order to compare different specialized versions according to their costs [1]. 
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Intuition 

Platform independent 
compile-time cost analysis 

Infers cost functions 
parameterized by 
some constants: 
cost(p(X)) = K*length(X) 

Platform dependent 
one-time profiling to 
calíbrate constants 
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•calibratoM (_) 
'calibrator_2(_) 
'calibrator_3(_) 

•\ 

Platform dependent 
compile-time cost analysis 

Functions that yield 
execution times 
depending on size of input: 
cost(p(X)) = 0.55*length(X) 

K = 0.55 

í 

Assessment 
Compare the estimated 
execution time with the 
observed time. 

Prediction of execution 
times for concrete inputs 

cost(p([1,2,3])) = 1.65 

4 
obs_time(p([1,2,3)) = 1,70 
(3% error) 

Assessment results 

Cost model accuracy - Global comparison 
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Model 

Model (Q) Components 
1 step nargs giunif gounif viunif vounif 
2 step giunif gounif viunif vounif 
3 step giunif gounif vounif 
4 step 

Applications 

Debugging/verification of timing properties. Guaranteeing 
meeting performance specifications. 
Resource/granularity control in parallel/distributed computing. 
Resource-oriented specialization. The inferred cost functions 
can be used to guide the specialization process. 
Mobile code safety and in particular Proof Carrying Code 
scenarios: e.g., code with timing guarantees in the ACC model. 
All currently implemented in CiaoPP! 

Detailed Example 

Platform-independent cost components 
define a cost model £2. 

Examples of cost components: 
l(steps)=1 perclause. 
l(nargs)=The arity of the clause head. 
l(giunif)=Function symbols, variables and constants in the 

clause head which appear in input arguments. 
l(gounif)=Function symbols, constants and variables in the 

clause head which appear in output arguments. 
l(viunif)=Variables in the clause head corresponding to input 

arguments. 
l(vounif)=Variables in the clause head corresponding to output 

arguments. 

Program 

:- module(nrev,[nrev/2], 
[assertions]). 

:- entry nrev/2:list(int)*var. 

nrev([],[]). 
nrev([B|A],C) :-

nrev(A.D), 
append(D,[B],C). 

append([],A,A). 
append([B|A],D,[B|C]) :-

append(A,D,C). 

Static Analysis 
Costp(l(fí)Jn)=(Costp(l(co1),n),...,Costp(l(cov),n))) 
where l(í2)=(l(co1),...,l(cov)) and n is the 

J size of input arguments. 
The components oo¡ define a particular 
cost model Cl 

Concrete input 

p=nrev(A, B) 
A=[1,2,3,4,5] 
n=length(A)=5 

I Result of platform dependent profiling 
I vector of constants, from running 

calibrators for \(Q) 

= (21.27,9.96,10.3,8.23,6.46,5.69) 

4̂  
Estimation of the execution time 

Exec_timep(n)= Kn» Costp(l(Q),n) ] 

00¡ 

steps 
nargs 
giunif 
gounif 

vounif 

Costp(l(o)¡),n) 

0.5*n2+1.5*n+1 
1.5*n2+3.5*n+2 
0.5*n2+3.5*n+1 
0.5*n2-0.5*n+1 
1.5*n2+1.5*n 
n2+n 

CosyKcOi)^) 

21 
57 
31 
16 
45 
30 

Kco¡ (us) 

21.27 
9.96 

10.30 
8.23 
6.46 
5.69 

Execution time (ms) Kfí • Costp(l(fí),n) 

K^xCostpíKco^n) 

446.7 
567.7 
319.3 
131.7 
290.7 
170.7 

1926.8 

Conclusions 

Developed framework which allows estimating execution times. 
Combines static analysis with one-time profiling. 
Implemented and integrated in the CiaoPP system. 
The combined framework predicts the execution times of 
programs with a reasonable degree of accuracy. 
We believe this is an encouraging result, since using a one-
time profiling for estimating execution times of other, 
unrelated programs is clearly a challenging goal. 
Interesting trade-off between accuracy and simplicity of the 
approach. 
Precisión can be improved by using more refined cost 
models which take into account additional (lower level) factors. 


