
Using Combined Static Analysis and Profiling
for Logic Program Execution Time Estimation

Edison Mera1, Pedro López-García1, Germán Puebla1,
Manuel Carro1, and Manuel Hermenegildo1'2

1 Technical University of Madrid
edison@clip.dia .f i .upm.es, {pedro.lopez,german,mcarro,herme}@fi.upm.es

2 University of New México, herme@unm.edu

Motivation. Predicting statically the running time of programs has many ap-
plications ranging from task scheduling in parallel execution to proving the abil-
ity of a program to meet strict time constraints. A starting point in order to
attack this problem is to infer the computational complexity of such programs
(or fragments thereof). This is one of the reasons why the development of static
analysis techniques for inferring cost-related properties of programs (usually up-
per and/or lower bounds of actual costs) has received considerable attention.

In most cases such cost properties are expressed using platform-independent
metrics: e.g., the number of resolution steps that a procedure will execute as a
function of the size of its input data [2, 3]. Although platform-independent costs
have been shown to be useful in various applications [6,4], in distributed execu­
tion and mobile/pervasive computation scenarios involving hosts with different
computational power, it becomes necessary to express costs in a way that can be
instantiated later to different architectures, to accurately reflect execution time.

Approach. With this objective in mind, we have developed a framework which
combines cost analysis with profiling techniques in order to infer functions which
yield bounds on platform-dependent execution times of procedures [7]. In this
framework, platform-independent cost functions, parameterized by a certain
number of constants, are inferred for each procedure in a given program. These
parameters aim at capturing the execution time of certain low-level operations
on each platform which is assumed to be independent from data size. Their
selection is, obviously, critical. For each execution platform, the valué of such
constants is determined experimentally by running a set of synthetic benchmarks
and measuring their execution time with a profiling toolkit developed in-house.
Once such constants are determined, they are substituted into the parametric
cost functions to make it possible to predict, with a certain accuracy, actual
execution times.

mailto:edison@clip.dia.fi.upm.es
mailto:herme@unm.edu

Each selection of parameters for the cost functions determines a cost model.
We have implemented this approach in the CiaoPP system [5], and studied a
number of cost models in order to determine experimentally which one is more
precise. In doing this we have taken into account the trade-off between sim-
plicity of the cost model (which affects the efficiency of the cost analysis and
the complexity of the profiling) and the precisión of their results. The results
achieved show tha t the combined framework predicts the execution times of pro­
grams with a reasonable degree of accuracy and pavés the way for more accurate
analyses by including additional parameters. We believe this is an encouraging
result, since using a one-time profiling for estimating execution times of other,
unrelated programs is clearly appealing.

Further Applications. Deducing the expected execution t ime of programs
in a fully automatic way has applications besides the already mentioned, more
classical ones. For example, in a Proof-Carrying Code (PCC) framework, pro-
ducers can send a certifícate which includes a platform-independent cost func-
tion. The consumer can then, using a calibrating program, compute the valúes
for the constants appearing in the parametric cost functions to obtain certified
platform-dependent cost functions. Another application is found in resource-
oriented specialization, where refined cost models can be used to help in guiding
specialization by taking into account not only the size of the resulting program,
but also its expected execution time (and maybe other low-level implementation
factors). In particular, they can be used to perform self-tuning specialization in
order to compare different specialized versions according to their costs [1].

References

1. S.J. Craig and M. Leuschel. Self-tuning resource aware specialisation for Prolog. In
Proc. of PPDP'05, pages 23-34. ACM Press, 2005.

2. S.K. Debray and N.W. Lin. Cost analysis of logic programs. ACM Transactions on
Programming Languages and Systems, 15(5):826-875, November 1993.

3. S.K. Debray, P. López-García, M. Hermenegildo, and N.-W. Lin. Lower Bound
Cost Estimation for Logic Programs. In 1997 International Logic Programming
Symposium, pages 291-305. MIT Press, Cambridge, MA, October 1997.

4. M. Hermenegildo, E. Albert, P. López-García, and G. Puebla. Abstraction Carrying
Code and Resource-Awareness. In Proc. of PPDP'05. ACM Press, July 2005.

5. Manuel V. Hermenegildo, Germán Puebla, Francisco Bueno, and Pedro López-
García. Integrated Program Debugging, Verification, and Optimization Using Ab-
stract Interpretation (and The Ciao System Preprocessor). Science of Computer
Programming, 58(1-2):115-140, October 2005.

6. P. López-García, M. Hermenegildo, and S.K. Debray. A Methodology for Granular-
ity Based Control of Parallelism in Logic Programs. J. of Symbolic Computation,
Special Issue on Parallel Symbolic Computation, 22:715-734, 1996.

7. E. Mera, P López-García, G. Puebla, M. Carro, and M. Hermenegildo. Combining
Static Analysis and Profiling for Estimating Execution Times in Logic Programs.
Technical Report CLIP5/2006.0, Technical University of Madrid (UPM), School of
Computer Science, UPM, April 2006.

Using Combined Static Analysis and Profiling for Logic Program Execution Time Estimation
Edison Mera1, Pedro López-García1, Germán Puebla1, Manuel Carro1, Manuel Hermenegildo1'2

1School of Computer Science, Technical University of Madrid (UPM), Madrid, Spain.
2Depts. of Computer Science and Electrical Engineering and Computer Eng., University of New México, Albuquerque, NM, USA.

Intuition

Platform independent
compile-time cost analysis

Infers cost functions
parameterized by
some constants:
cost(p(X)) = K*length(X)

Platform dependent
one-time profiling to
calíbrate constants

i

•calibratoM (_)
'calibrator_2(_)
'calibrator_3(_)

•\

Platform dependent
compile-time cost analysis

Functions that yield
execution times
depending on size of input:
cost(p(X)) = 0.55*length(X)

K = 0.55

í

Assessment
Compare the estimated
execution time with the
observed time.

Prediction of execution
times for concrete inputs

cost(p([1,2,3])) = 1.65

4
obs_time(p([1,2,3)) = 1,70
(3% error)

Assessment results

Cost model accuracy - Global comparison

60

^ 55

° ^ 50
c 45

"•¡6 40
E 35

| 30

® 25

c 20

15

10

5

0

O

LL¡

Intel platform
PPC platform

Model

Model (Q) Components
1 step nargs giunif gounif viunif vounif
2 step giunif gounif viunif vounif
3 step giunif gounif vounif
4 step

Applications

Debugging/verification of timing properties. Guaranteeing
meeting performance specifications.
Resource/granularity control in parallel/distributed computing.
Resource-oriented specialization. The inferred cost functions
can be used to guide the specialization process.
Mobile code safety and in particular Proof Carrying Code
scenarios: e.g., code with timing guarantees in the ACC model.
All currently implemented in CiaoPP!

Detailed Example

Platform-independent cost components
define a cost model £2.

Examples of cost components:
l(steps)=1 perclause.
l(nargs)=The arity of the clause head.
l(giunif)=Function symbols, variables and constants in the

clause head which appear in input arguments.
l(gounif)=Function symbols, constants and variables in the

clause head which appear in output arguments.
l(viunif)=Variables in the clause head corresponding to input

arguments.
l(vounif)=Variables in the clause head corresponding to output

arguments.

Program

:- module(nrev,[nrev/2],
[assertions]).

:- entry nrev/2:list(int)*var.

nrev([],[]).
nrev([B|A],C) :-

nrev(A.D),
append(D,[B],C).

append([],A,A).
append([B|A],D,[B|C]) :-

append(A,D,C).

Static Analysis
Costp(l(fí)Jn)=(Costp(l(co1),n),...,Costp(l(cov),n)))
where l(í2)=(l(co1),...,l(cov)) and n is the

J size of input arguments.
The components oo¡ define a particular
cost model Cl

Concrete input

p=nrev(A, B)
A=[1,2,3,4,5]
n=length(A)=5

I Result of platform dependent profiling
I vector of constants, from running

calibrators for \(Q)

= (21.27,9.96,10.3,8.23,6.46,5.69)

4̂
Estimation of the execution time

Exec_timep(n)= Kn» Costp(l(Q),n)]

00¡

steps
nargs
giunif
gounif

vounif

Costp(l(o)¡),n)

0.5*n2+1.5*n+1
1.5*n2+3.5*n+2
0.5*n2+3.5*n+1
0.5*n2-0.5*n+1
1.5*n2+1.5*n
n2+n

CosyKcOi)^)

21
57
31
16
45
30

Kco¡ (us)

21.27
9.96

10.30
8.23
6.46
5.69

Execution time (ms) Kfí • Costp(l(fí),n)

K^xCostpíKco^n)

446.7
567.7
319.3
131.7
290.7
170.7

1926.8

Conclusions

Developed framework which allows estimating execution times.
Combines static analysis with one-time profiling.
Implemented and integrated in the CiaoPP system.
The combined framework predicts the execution times of
programs with a reasonable degree of accuracy.
We believe this is an encouraging result, since using a one-
time profiling for estimating execution times of other,
unrelated programs is clearly a challenging goal.
Interesting trade-off between accuracy and simplicity of the
approach.
Precisión can be improved by using more refined cost
models which take into account additional (lower level) factors.

