
Towards Execution Time Estimation
for Logic Programs

via Static Analysis and Profiling

Edison Mera1 , Pedro López-García1 , Germán Puebla1 ,
Manuel Carro 1 , and Manuel Hermenegildo1 '2

1 Technical University of Madrid
edison@clip.dia .f i .upm.es, {pedro.lopez,german,mcarro,herme}@fi.upm.es

2 University of New México, herme@unm.edu

Abstract. Effective static analyses have been proposed which infer bounds
on the number of resolutions or reductions. These have the advantage
of being independent from the platform on which the programs are ex-
ecuted and have been shown to be useful in a number of applications,
such as granularity control in parallel execution. On the other hand, in
distributed computation scenarios where platforms with different capa-
bilities come into play, it is necessary to express costs in metrics that
include the characteristics of the platform. In particular, it is specially
interesting to be able to infer upper and lower bounds on actual execu­
tion times. With this objective in mind, we propose an approach which
combines compile-time analysis for cost bounds with a one-time profiling
of the platform in order to determine the valúes of certain parameters for
a given platform. These parameters calíbrate a cost model which, from
then on, is able to compute statically time bound functions for proce-
dures and to predict with a significant degree of accuracy the execution
times of such procedures in the given platform. The approach has been
implemented and integrated in the CiaoPP system.

Keywords: Execution Time Estimation, Cost Analysis, Profiling, Re-
source Awareness, Cost Models, Mobile Computing.

1 Introduction

Predicting statically the running time of programs has many applications rang-
ing from task scheduling in parallel execution to proving the ability of a pro-
gram to meet strict t ime constraints in real-time systems. A start ing point in
order to attack this problem is to infer the computational complexity of such
programs. This is one of the reasons why the development of static analysis
techniques for inferring cost-related properties of programs has received con­
siderable attention. However, in most cases such cost properties are expressed
using platform-independent metrics. For example, [4, 5] present a method for
automatically inferring functions which capture an upper bound on the number
of resolution steps or reductions tha t a procedure will execute as a function of
the size of its input data . In [10,11] the method of [4,10] was fully automated in
the context of a practical compiler and in [6,10] a similar approach was applied
in order to also obtain lower bounds, which are specially relevant in parallel

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148662997?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:edison@clip.dia.fi.upm.es
mailto:herme@unm.edu

execution. Such platform-independent cost information (bounds on number of
reductions) has been shown to be quite useful in various applications. This in-
cludes, for example, scheduling parallel tasks [8,10,11]. In a typical scenario,
these tasks will be executed in a single parallel machine, where all processors are
typically identical. Therefore, the deduced number of reductions can actually be
used as a relative measure in order to compare to a ñrst degree of approximation
the amount of work under the tasks.

However, in distributed execution and other mobile/pervasive computation
scenarios, where different platforms come into play with each platform having
different computing power, it becomes necessary to express costs in metrics that
can be later instantiated to different architectures so that actual running time
can be compared using the same units. This applies also to heterogeneous par­
allel computing platforms. With this objective in mind, we present a framework
which combines cost analysis with proñling techniques in order to infer func-
tions which yield bounds on platform-dependent execution times of procedures.
Platform-independent cost functions are ñrst inferred which are parameterized
by certain constants. These constants aim at capturing the execution time of
certain low-level operations on each platform. For each execution platform, the
valué of such constants is determined experimentally once and for all by running
a set of synthetic benchmarks and measuring their running times with a proñling
toolkit that we have also developed. Once these constants are determined, they
are fed into the model with the objective of predicting with a certain accuracy
execution times. We have studied a relatively large number of cost models, in-
volving different sets of constants in order to explore experimentally which of the
models produces the most precise results, i.e., which parameters model and pre-
dict best the actual execution times of procedures. In doing this we have taken
into account the trade-off between simplicity of the cost models (which implies
efñciency of the cost analysis and also simpler proñling) and the precisión of
their results. With this aim, we have started with a simple model and explored
several possible reñnements.

In addition to cost analysis, the implementation of proñlers in declarative lan-
guages has also been considered by various authors, with the aim of helping to
discover why a part of a program does not exhibit the expected performance. De-
bray [3] showed the basic considerations to have in mind when proñling Prolog
programs: handling backtracking and failure. Ducassé [7] designed and imple-
mented a trace analyzer for Prolog which can be applied to proñling. Sansom
and Peyton Jones [13] focused on proñling of functional languages using a seman-
tic approach and highlighted the difñculty in proñling such kind of languages.
Jarvis and Morgan [12] showed how to proñle lazy functional programs. Brassel
et al. [1] solved part of the difñculty in proñling when considering special features
in functional logic programs, like sharing, laziness and non-determinism. We will
use also proñling but, since our aim is to predict performance, proñling will in
our case be aimed at calibrating the valúes for some constants that appear in
the cost functions, and which will be instrumental to forecast execution times
for a given platform and cost model. Therefore we will not use proñling with just
some ñxed input arguments, but with a set of programs and input arguments
which we hope will be representative enough to derive meaningful characteristics
of an execution platform.

2 Static Platform-Dependent Cost Analysis

In this Section we present the compile-time cost bounds analysis component of
our combined framework. This analysis has been implemented and integrated
in CiaoPP [9] by extending previous implementations of reduction-counting cost
analyses. The inferred (upper or lower) bounds on cost are expressed as functions
on the sizes of the input arguments and use several platform-dependent param-
eters. Once these parameters are instantiated with valúes for a given platform,
such functions yield bounds on the execution times required by the computation
on such platform. The analyzer can use several metrics for computing the "size"
of an input, such as list-length, term-size, term-depth, integer-valué, etc. Types,
modes, and size measures are ñrst automatically inferred by other analyzers
which are part of CiaoPP and then used in the size and cost analysis.

2.1 Platform-Independent Static Cost Analysis

As mentioned before, our static cost analysis approach is based on that developed
in [4, 5] (for estimation of upper bounds on resolution steps) and further extended
in [6] (for lower bounds). In these approaches the time complexity of a clause can
be bounded by the time complexity of head uniñcation together with the time
complexity of each of its body literals. For simplicity, the discussion that follows
is focused on the estimation of upper bounds. We refer the reader to [6] for
details on lower bounds analysis. Consider a clause C deñned as "H : —Li,..., Lm".
Because of backtracking, the number of times a literal will be executed depends
on the number of solutions that the literals preceding it can genérate. Assume
that ñ is a vector such that each element corresponds to the size of an input
argument to clause C and that each ñ¿, i = 1 . . . m, is a vector such that each
element corresponds to the size of an input argument to literal L¿, T is the cost
needed to resolve the head H of the clause with the literal being solved, and
SolsL. is the number of solutions literal Lj can genérate. Then, an upper bound
on the cost of clause C (assuming all solutions are required), Costc(ñ), can be
expressed as:

m

Costc(ñ) < T + ^2{Y[SolsLj{ñj))CostLi{ñi), (1)

Here we use j -< i to denote that Lj precedes L¿ in the literal dependency graph
for the clause.

Our current implementation also considers the cost of the terms created
for the literals in the body of predicates, which can affect the cost expression
significantly. To further simplify the discussion that follows, we restrict ourselves
to the simple case where each literal is determínate, Le., produces at most one
solution. In this case, equation (1) simpliñes to:

m

Costc(ñ) < T + ^ C o s t L ¡ (ñ ¿) . (2)
¿=i

(However, it is important to note that our implementation is not limited to
deterministic programs: our system handles non determinism, i.e., presence of
several solutions for a given cali, in the cost analysis).

A difference equation is set up for each recursive clause, whose solution (using
as boundary conditions the cost of non-recursive clauses) is a function that yields
the cost of a clause. The cost of a predicate is then computed from the cost of
its deñning clauses. Since the number of solutions generated by a predicate that
will be demanded is generally not known in advance, a conservative upper bound
on the computational cost of a predicate can be obtained by assuming that all
solutions are needed, and that all clauses are executed (thus the cost of the
predicate is assumed to be the sum of the costs of its deñning clauses). Taking
mutual exclusión into account in order to obtain a more precise estimate of the
cost of a predicate is relatively easy: the complexity for deterministic predicates
can be approximated with the máximum of the costs of mutually exclusive groups
of clauses.

The analysis in [4, 5] was primarily aimed at estimating resolution steps.
However, the basic metric is open and can be tailored to alternative scenarios:
more sophisticated, accurate measures can be used instead of the initially pro-
posed ones (e.g., number of basíc uniñcations). In the rest of this section we
explore this open issue more deeply and study how the original cost analysis can
be extended in order to infer cost functions using more reñned and parametric
cost models, which in turn will allow achieving accurate execution time bound
analysis.

2.2 Proposed Platform-Dependent Cost Analysis Models

Since the cost metric which we want to use in our approach is execution time, we
take T (in expression 2) to include the time needed to resolve the head H of the
clause with the literal being solved, the cost associated with the resolution of the
clause, and the cost coming from setting up the body literals for execution. In the
following, we will refer to T as the clause head cost function, under the assumption
that these other costs are also taken into account. We will consider different
valúes for T, each of them yielding a different cost model. These cost models
make use of a vector of platform-dependent constants, together with a vector of
platform-independent metrics, each one corresponding to a particular low-level
operation related to program execution. Examples of such low-level operations
considered by the cost models are uniñcations where one of the terms being
uniñed is a variable and thus behave as an "assignment", or full uniñcations, i.e.,
when both terms being uniñed are not variables, and thus uniñcation performs
a "test" or produces new terms, etc. Thus, we assume that T is a function
parameterized by the cost model, so that:

T{Í2) = time{í2) (3)

where time(Ü) is a function that gives the time needed to resolve the head H of
the clause with the literal being solved (plus some possible costs associated to the
execution of the clause such as, e.g., whether an activation record is allocated)
for the cost model named f¿. We study a family of cost models such that time(Ü)
is a function deñned as follows:

time(íl) = í jme(wi) + • • • + time{uiv), v > O (4)

where each time(u>i) provides tha t part of the execution time which depends on
the metric w¿. We assume that :

time(uji) = KUi x I(LÜÍ) (5)

where KUí is a platform-dependent constant, and i~(w¿) is a platform-independent
cost function.

Since time(í2) is a linear combination of platform-independent cost functions,
we can write equation (4) as:

time(í2) = Kn»I(í2) (6)

where KQ is a vector of platform-dependent constants, I(Í2) is a vector of
platform-independent cost functions, and • is the dot product.

Accordingly, we generalize the deñnition of equation (2) introducing the
clause head cost function T as a parameter:

m

Cost c (T ,ñ) < T + ^ C o s t L ! (ñ ¿) . (7)
¿=i

A particular deñnition of I(Í2) yields a cost model. We have tried several cost
models, by using different vectors I(Í2) constructed by choosing some (or all)
of the foUowing J(w¿) cost functions (for example, the cost model tha t uses all
such functions is I(Í2) = (I(step),I(viunif),I(vounif),I(giunif),I(gounif))).
In the foUowing an input argument is one for which the term being passed by
the calling literal is known to be non-var at the time of head uniñcation. An
output argument is one for which the term being passed by the calling literal is
known to be a variable at the time of head uniñcation. Whether uniñcations are
input or output can be inferred using well-known techniques for mode analyses
(in our case, those provided by CiaoPP).

— I(step) = 1.
Here we assume tha t there is a constant component of the execution time
when a clause is resolved (a clause neck " : - " is crossed). Le., foUowing
equation (5), we are assuming for this component that :

time(step) = Kstep

— I(vounif) = the number of variables in the clause head which correspond to
"output" argument positions.

Here we assume tha t there is a component of the execution time tha t is di-
rectly proportional to the number of cases where we know tha t both terms
being uniñed are variables and thus uniñcation really implies a simple as-
signment with a (presumably small) constant cost:

time(vounif) = Kvounif x I(vounif)

— I(viunif) = the numher of variables in the clause head which correspond to
"input" argument positions.

Here we assume tha t there is a component of the execution time tha t is di-
rectly proportional to the number of cases where we know tha t the incoming
term is non-var and the argument position in the clause is a variable. In
this case the head uniñcation for tha t argument is also an assignment with
a small, constant cost, and there is also a cost associated with creating the
input argument at the calling point, which for simplicity we will also consider
constant. Given these assumptions:

time(viunif) = Kviunif x I(viunif)

— I(gounif) = The number of function symbols, constants, and variables in
the clause head which appear in output arguments.
We are assuming tha t there is a component of the execution time tha t is
directly proportional to the size of the terms tha t have to be written into
variables passed in by the calling literal, and which is proportional to the
number of function symbols, constants, and variables which appear in output
arguments in the clause head:

time(gounif) = Kgounif x I(gounif)

— I(giunif) = The number of function symbols, variables, and constants in
the clause head which appear in input arguments.
Here we are assuming that there is a component of the execution time tha t
is directly proportional to the number of "input" uniñcations, Le., when
both terms being uniñed are not variables, and thus uniñcation performs a
"test," and which is actually proportional to the number of function symbols,
variables, and constants in the clause head which appear in input arguments
(this is obviously an approximation):

time(giunif) = Kgiunif x I(giunif)

— I{nar gs) = arity(H).
Here we are assuming that there is a component of the execution time tha t
depends on the number of arguments in the clause head:

time(nargs) = Knargs x arity(H) (8)

This component is obviously redundant with respect to the previous ones,
but we have included it as a statistical control: the experiments should show
(and do show) tha t it is irrelevant when the others are used.

Clearly, other components can be included (such as whether activation records
are created or not) but our objective is to see how far we can go with the com­
ponents outlined above.

We adopt the same approach as [5, 6] for computing bounds on cost of pred-
icates from the computed valúes for the cost of the clauses deñning it. However,
we introduce the clause head cost function T as a parameter of these cost func-
tions.

Let Costp(r, ñ) be a function which gives the cost of the computation of a
cali to predicate p for an input of size ñ (recall that the cost units depend on the
deñnition of T) . Given a predicate p, and a clause head cost function time(í2)
of the form deñned in equation (6), we have that:

Costp(t«me(í2), n) = Kn • Cost?(I(í2), n) (9)

where KQ, I(Í2) and Costp(/(í2),ñ) are vectors of the form:

!{(}) = {I{UÍ),...,I{UV)), and

Costp(/(í2),ñ) = (Costp(i"(wi),ñ), . . . , Costp(J(w,,),ñ))

Equation (9) gives the basis for computing valúes for constants KÜJí via pro-
ñling (as explained in Section 4). Also, it provides a way to obtain the cost of
a procedure expressed in a platform-dependent cost metric from another cost
expressed in a platform-independent cost metric.

3 Reflning the Cost Model: Dealing with Builtins

In this section we present our approach to the cost analysis of programs which
cali builtins, or more generally, predicates whose code is not available to the
analyzer (external predicates). We will refer to all of them as builtins for brevity.
We assume that there is a cost function (expressed via trust assertions [9]) for
builtin predicates. In some cases, this cost function for each builtin predicate
is approximated by a constant valué, and in others, it is approximated by a
function that depends on properties of the (input) arguments of the predicate.
In particular, the cost of arithmetic builtin predicates (such as =:=/2, =\=/2,
or >/2) is approximated by a function that depends on the number and type of
arithmetic operands appearing in the arithmetic expressions that can be passed
to such predicates as arguments.

Note that this is an important improvement over the cost analysis proposed
in [5] (which infers number of resolutíon steps), since one of the assumptions
made in such analysis is that calis to certain builtin predicates are not counted
as a resolution step, and are thus completely ignored by cost analysis. This
assumption is not realistic if we want to estimate execution times, since the cost
of executing such builtins has to be taken into account.

Going into more detail, we assume that each builtin contributes with a new
component to the execution time as expressed in Equation (4), that is, our
cost model will have a new component time(u>i) for each builtin predicate and
arithmetic operator. Let ©/n be an arithmetic operator. The execution time due
to the total number of times that such operator is evaluated is given by:

time(Q/n) = KQ/n x / (©/n)

where K&/n is a platform-dependent constant, and / (©/n) is a platform-independent
cost function. if©/„ approximates the cost (in units of time) of evaluating the
arithmetic operator ©/n. / (©/n) could be the number of times that the arith­
metic operator is evaluated. Alternatively, it can be a cost function deñned as:

I(Q/n) = y^EvCost (0 /n , a)
aes

and where S is the set of arithmetic expressions appearing in the clause body
which will be evaluated; and EvCost(©/n, a) represents the cost corresponding
to the operator ©/n in the evaluation of the arithmetic term a, i.e.:

if A is a constant
or a variable

EvCost(©/n,A)
1 + Y, EvCost(©/n, Ai) iíA = &(AU ..., An)

¿=i
m
E E v C o s t (© / n , ^) if A^Q(Ah...,An)
¿=i AA = Q(A1,...,Am)

for some operator ©/m

For simplicity, we assume that the cost of evaluating the arithmetic term t
to which a variable appearing in A will be bound at execution time is zero (i.e.,
we ignore the cost of evaluating í). This is a good approximation if in most cases
t is a number and thus no evaluation is needed for it. However, a more reñned
cost model could assume that this cost is a function on the size of t.

Note that this model ignores the possible optimizations that the compiler
might perform. We can take into account those performed by source-to-source
transformation by placing our analyses in the last stage of the front-end, but at
some point the language the compiler works with would be different enough as
to require different considerations in the cost model.

However, experimental results show that our simpliñed cost model gives a
good approximation of the execution times for arithmetic builtin predicates.
With these assumptions, equation (9) (in Section 2.2) also holds for programs
that perform calis to builtin predicates, say, for example, a builtin b/n, by in-
troducing b/n and ©/n as new cost components of f¿.

A similar approach can be used for other (non-arithmetic) builtins b/n using
the formula:

time(b/n) = Kb/n x I(b/n)

4 Calibrating Constants via Proflling

In order to compute valúes for the platform-dependent constants which appear
in the different cost models proposed in Section 2.2, our calibration schema takes
advantage of the relationship between the platform-dependent and -independent
cost metrics expressed in Equation (9). In this sense, the calibration of the
constants appearing in KQ is performed by solving systems of linear equations
(in which such constants are treated as variables).
Based on this expression, the calibration procedure consists of:

Using a selected set of calibration programs which aim at isolating speciñc
aspects that affect execution time of programs in general. For these calibra­
tion programs it holds that Costp(i~(w¿),ñ) is known for all 1 < i < v. This
can be done by using any of the following methods:

— The analyzers integrated in the CiaoPP system infer the exact cost func-
tion, Le., Costp (J(wj),n) = Costp"(J(wj),n) = Costp(J(wj) n

— Costp(/(w¿),ñ) is computed by a proñler tool, or
— Costp(/(w¿), ñ) is supplied by the user together with the code of program

p (i.e., the cost function is not the result from any automatic analysis
but rather p is well known and its cost function can be supplied in a
trust assertion).

2. For each benchmark p in this set, automatically generating a signiñcant
amount m of input data for it. This can be achieved by associating with
each calibration program a data generation rule.

3. For each generated input data dj, computing a pair (CPj,TPj), 1 < j < m,
where:

— TPj is the j - th observed execution time of program p with this generated
input data.

— CPj = Cost?(I(í2),ñj), where ñj is the size of the j-th input data dj.

4. Using the set of pairs (CPj,TPj) for setting up the equation:

CPj*Kn=TPj (10)

where KQ is considered a vector of variables.
5. Setting up the (overdetermined) system of equations composed by putting

together all the equations (10) corresponding to all the calibration programs.
6. Solving the above system of equations using the least square method (see,

e.g., [14]). A solution to this system gives valúes to the vector KQ and henee,
to the constants KÜJí which are the elements composing it.

7. Calculating the constants for builtins and arithmetic operators by performing
repeated tests in which only the builtin being tested is called, accumulating
the time, and dividing the accumulated time by the number of times the
repeated test has been performed.

5 Assessment of the Calibration of Constants

We have assessed both the constant calibration process and the prediction of
execution times using the previously proposed cost models in two different plat-
forms:

— "intel" platform: Dell Optiplex, Pentium 4 (Hyper threading), 2GHz, 512MB
RAM memory, Fedora Core 4 operating System with Kernel 2.6.

- "ppc" platform: Apple iMac, PowerPC G4 (1.1) 1.5GHz, 1GB RAM memory,
with Mac OS X 10.4.5 Tiger.

Program
Environments creation
Predicates with no arguments
Traverse a list without last cali optimization
Traverse a list with last cali optimization
Program for which Iiyiunif) is known
Program for which Iiyounif) is known
Program (unifying deep terms) for which I(giunif) is known
Program (unifying fíat terms) for which I(giunif) is known
Program for which I(gounif) is known
Predícate with many arguments

Table 1. Description of calibration programs used in the estimation of constants.

In section 4 we presented equation 10, and we mentioned tha t it can be
solved using the least squares method. We used the householder algorithm, which
consists in decomposing the matr ix C = {CPj}, which has m rows and n columns
into the product of two matrices Q and U (denoted • or without any symbol)
such tha t C = Q • U, where Q is an orthonormal matr ix (i.e., QT • Q = I,
the m x m identity matrix) and U an upper triangular m x n matrix. Then,
multiplying both sides of the equation 10 by QT and simplifying we can get:

U •K = QT • T = B

where, for clarity, we denote K = KQ, T = TPj and QT • T = B. We can take
advantage of the structure of U and define V as the first n rows of U, n being
the number of columns of C and b the first n rows of B, then K can be estimated
solving the following upper triangular system, where K s tands for the estimate
for K:

V •K = QT *T = b

Since this method is being used to find an approximate solution, we define
the residual of the system as the valué

R=T-CK

Let
RSS = R»R

be the residual square sum, and let

MRSS=^-
m — n

be the mean of residual square sum, where m and n are the number of rows and
columns of the matr ix C respectively, and finally let

S = VMRSS

be the estimation of the model s tandard error, S. In order to experimentally
evalúate which models bet ter approximate the observed time in practice, we

Plat.
intel

ppc

Model
step nargs giunif gounif viunif vounif
step giunif gounif viunif vounif
step giunif gounif vounif
step
step nargs giunif gounif viunif vounif
step giunif gounif viunif vounif
step giunif gounif vounif
step

S Os)
6.2475
9.3715

13.7277
68.3088

4.7167
5.9676

16.4511
116.0289

Kn

(21.27, 9.96, 10.30, 8.23, 6.46, 5.69)
(26.56, 10.81, 8.60, 6.17, 6.39)
(27.95, 11.09, 8.77, 7.40)
108.90
(41.06, 5.21, 16.85, 15.14, 9.58, 9.92)
(43.83, 17.12, 15.33, 9.43, 10.29)
(45.95, 17.55, 15.59, 11.82)
183.83

Table 2. Global valúes for vector constants in several cost models (in nanoseconds),
sorted by S, the standard error of the model.

have compared the valúes of MRSS (or S) for several proposed models. Table 2
shows the estimated valúes for the vector K using the cahbration programs in
Table 1, as well as the standard error of the model, sorted from the best to the
worst model. For example, the ñrst row in the table shows the model that has
as components step, nargs, giunif, gounif, viunif, vounif for the intel platform.
It has a standard error of 6.2475 ¡JLS and the valúes for each of the constants are
21.27, 9.96, 10.30, 8.23, 6.46, and 5.69 nanoseconds, respectively.

Note that the estimation of K is done just once per platform. In the case of
the intel platform it took 15.62 seconds and in ppc 17.84 seconds, repeating the
experiment 250 times for each program.

6 Assessment of the Prediction of Execution Times

We have tested the implementation of the proposed cost models in order to
assess how well they predict the execution time of other programs (not used
in the cahbration process) statically, without performing any runtime proñling
with them. We have performed experiments with all of the 63 possible cost
models that result of the combination of one or more of the components de-
scribed in Section 2.2. However, for space reasons and for clarity, we only show
the three most accurate cost models (according to a global accuracy compar-
ison that will be presented later) plus the step model, which has special in-
terest as we will also see later. Experimental results are shown in Table 3.
Prog. lists the program ñames. The analyzers integrated in the CiaoPP sys-
tem infer the exact cost function for all the programs in that table under the
I(u>i) metric, which means that the upper and lower bound are the same, Le.,
Costp'(/(a;¿),ñ) = Costp"(/(a;¿),ñ) = Costp(/(a;¿),ñ). There are several rows
for each program in the table. The ñrst three rows show results corresponding
to the prediction of execution times with the three more accurate cost models.
The fourth row shows the prediction obtained by the cost model step that only
considers resolution steps, i.e., it assumes that the execution time of a proce-
dure cali is directly proportional to the number of resolution steps performed
by the cali. This means that for this simple cost model we are assuming that
time(step) = Kstep, since I(step) = 1, for a constant Kstep, which represents the
time taken by a resolution step. Note that Costc(i(step), n) gives the number

Prog.

evpol

hanoi

nrev

palind

powset

append

Model

step nargs giunif gounif viunif vounif
step giunif gounif viunif vounif
step giunif gounif vounif
step
Observed
Analysis time Tca (s)
step nargs giunif gounif viunif vounif
step giunif gounif viunif vounif
step giunif gounif vounif
step
Observed
Analysis time Tca (s)
step nargs giunif gounif viunif vounif
step giunif gounif viunif vounif
step giunif gounif vounif
step
Observed
Analysis time Tca (s)
step nargs giunif gounif viunif vounif
step giunif gounif viunif vounif
step giunif gounif vounif
step
Observed
Analysis time Tca (s)
step nargs giunif gounif viunif vounif
step giunif gounif viunif vounif
step giunif gounif vounif
step
Observed
Analysis time Tca (s)
step nargs giunif gounif viunif vounif
step giunif gounif viunif vounif
step giunif gounif vounif
step
Observed
Analysis time Tca (s)

intel
Estímate
(A**) (%)

89.72 (44)
85.06 (38)

82 (35)
90.12 (45)
58.43
2.002
319 (31)

243.3 (3)
205.6 (14)
340.7 (38)
235.3
2.145
131.3 (68)
101.1 (39)
82.51 (18)
144.4 (80)
69.25
2.022
131.8 (18)
101 (9)

86.91 (24)
167.2 (43)
110

2
537.5 (59)
404.5 (28)
323.8 (5)
448.7 (38)
308.2
2.07

50.29 (75)
38.69 (44)
31.36 (22)
54.56 (85)
25.16
1.932

ppc
Estímate
(A**) (%)
77.4 (23)
74.96 (26)
70.28 (33)
85.07 (13)
97.08
4.461
398.5 (4)
358.8 (7)
301.3 (25)
538.6 (34)
384.2
4.903
179.4 (26)
163.6 (16)
135.2 (3)
243.8 (59)
139.2
4.691
179.8 (5)
163.7 (5)
142.1 (19)
282.2 (52)
171.6
4.7

727.9 (17)
658.3 (7)
534.9 (14)
757.4 (21)
615

4.636
68.72 (24)
62.65 (15)
51.45 (5)
92.1 (56)
53.92
4.441

Table 3. Evaluation of execution time predictions.

of resolution steps performed by clause C. The last row per benchmark program
presents the observed execution times (i.e., measured execution times) and allows
measuring the accuracy of the different predictions. In this sense, valúes in the
Model column are the ñames of the four cost models. The valué observed iden-
tiñes the row corresponding to the observed valúes. The following two columns
show results corresponding to the "intel" and "ppc" execution platforms.

Platform
intel

ppc

Model
step nargs giunif gounif viunif vounif
step giunif gounif viunif vounif
step giunif gounif vounif
step
step nargs giunif gounif viunif vounif
step giunif gounif viunif vounif
step giunif gounif vounif
step

Error (%)
53.17
31.06
21.48
58.45
18.72
14.66
19.44
43.04

Table 4. Global comparison of the accuracy of cost models.

Column E s t i m a t e shows execution times computed by using the average
valué of the constant KQ as estimated in Table 2:

E s t i m a t e = KQ • Costp(/ (í2) , n)

Deviations respect to the observed valúes (in the observed row) are also shown
between parenthesis in the column E s t i m a t e .

The observed execution times have been measured by running the programs
with input da ta of a ñxed size. 10 input da ta sets of such ñxed size have been
generated randomly. 5 runs of the program have been performed for each such in­
put da ta set. The observed execution time for such input size has been computed
as the average of all runs.

Row Tca shows the total (static) cost analysis t ime (in seconds) needed to
perform the execution time estimation (and includes mode, type, and cost anal­
ysis).

Table 4 compares the overall accuracy of the four cost models already shown
in Table 3, for the two considered platforms. The last column shows the global
error and it is an indicator of the amount of deviation of the execution times
estimated by each cost model with respect to the observed valúes. As global
error we take the square mean of the errors in each example being considered
in Table 3. By considering both platforms in combination we can conclude tha t
the more accurate cost model is the one consisting of steps, giunif, gounif, vi­
unif, and vounif. This cost model has an overall error of 14.66 % in platform
"PPC" and 31.06 % in "Intel". In "Intel" (obviously a more challenging plat­
form) the model consisting of steps, giunif, gounif, and vounif appears to be the
best. This coincides with our intuition tha t taking into account a comparatively
large number of lower-level operations should improve accuracy. However, such
components should contribute signiñcantly to the model in order to avoid noise
introduction. It is also interesting to see tha t including nargs in the cost model
does not further improve accuracy, as expected, since nargs is not independent
from the four components giunif, gounif, viunif, vounif. In fact, including this
component results in a less precise model in both platforms, due to the noise in-
troduced in the model. Also, the cost model step deserves special mention, since
it is the simplest one and, at least for the given examples, the error is smaller
than we expected and better than more complex cost models not shown in the
tables.

Overall we believe that the results are very encouraging in the sense that
our combined framework predicts with an acceptable degree of accuracy the
execution times of programs and pavés the way for even more accurate analyses
by including additional parameters.

7 Applications

The experimental results presented in Section 6 show that the proposed frame­
work can be relevant in practice for estimating platform dependent cost metrics
such as execution time. We believe that execution time estimates can be very use-
ful in several contexts. As already mentioned, in certain mobile/pervasive com-
putation scenarios different platforms come into play with each platform having
different capabilities. More concretely the execution time estimates could be
useful for performing resource/granularity control in parallel/distributed com-
puting. This belief is based on previous experimental results, where it appeared
from the sensitivity of the results observed in such experiments, that while it is
not essential to be absolutely precise in inferring the best time estimates for a
query, the number of reductions by itself was a rough measure and the current
time estimation approach could presumably improve on previous results.

One of the good features of our approach is that we can transíate platform-
independent cost functions (which are the result of the analyzer) into platform-
dependent cost functions (using the relationship in expression (9)). A possible
application for taking advantage of this feature is mobile code safety and in
particular Proof-Carrying Code (PCC), a general approach in which the code
supplier augments the program with a certifícate (or proof). Consider a scenario
where the producer sends a certifícate with a platform-independent cost function
(Le., where the cost is expressed in a platform-independent metric) together with
a calibration program. The calibration program includes a ñxed set of calibration
benchmarks. Then, the consumer runs (only once) the calibration program and
computes the valúes for the constants appearing in the cost functions. Using
these constants, the consumer can obtain platform-dependent cost functions [8].

Another application of the proposed approach is resource-oriented special-
ization. The proposed cost-models, which include low-level factors for CLP pro­
grams, are more reñned cost-models than previously proposed ones and thus can
be used to better guide the specialization process. The inferred cost functions
can be used to develop automatic program transformation techniques which take
into account the size of the resulting program, its run time and memory usage,
and other low-level implementation factors. In particular, they can be used for
performing self-tuning specialization in order to compare different specialized
versión according to their costs [2].

8 Conclusions

We have developed a framework which allows estimating execution times of
procedures of a program in a given execution platform. The method proposed
combines compile-time (static) cost analysis with a one-time proñling of the
platform in order to determine the valúes of certain constants. These constants

calibrate a cost model from which t ime cost functions for a given platform can
be computed statically. The approach has been implemented and integrated in
the CiaoPP system. To the best of our knowledge, this is the ñrst combined
framework for estimating statically and accurately execution t ime bounds based
on static automatic inference of upper and lower bound complexity functions
plus experimental adjustment of constants. We have performed an experimen­
tal assessment of this implementation for a wide range of different candidate
cost models and two execution platforms. The results achieved show tha t the
combined framework predicts the execution times of programs with a reason-
able degree of accuracy. We believe this is an encouraging result, since using a
one-time proñling for estimating execution times of other, unrelated programs
is clearly a challenging goal.

Also, we argüe tha t the work presented in this paper presents an interesting
trade-off between accuracy and simplicity of the approach. At the same time,
there is clearly room for improving precisión by using more reñned cost models
which take into account additional (lower level) factors. Of course, these models
would also be more difñcult to handle since on one hand they would require
computing more constants and on the other hand they may require taking into
account factors which are not observable at source level. This is in any case the
subject of possibly interesting future work.

References

1. B. Brassel, M. Hanus, F. Huch, J. Silva, and G. Vidal. Run-time proñling of
functional logic programs. In Proceedings of the International Symposium on
Logic-based Program Synthesis and Transformation (LOPSTR'04), pages 182-197.
Springer LNCS 3573, 2005.

2. S.J. Craig and M. Leuschel. Self-tuning resource aware specialisation for Prolog.
In Proc. ofPPDP'05, pages 23-34. ACM Press, 2005.

3. S. K. Debray. Proñling prolog programs. Software Practice and Experience,
18(9):821-839, 1983.

4. S.K. Debray, N.-W. Lin, and M. Hermenegildo. Task Granularity Analysis in Logic
Programs. In Proc. of the 1990 ACM Conf. on Programming Language Design and
Implementation, pages 174-188. ACM Press, June 1990.

5. S.K. Debray and N.W. Lin. Cost analysis of logic programs. ACM Transactions
on Programming Languages and Systems, 15(5):826-875, November 1993.

6. S.K. Debray, P. López-García, M. Hermenegildo, and N.-W. Lin. Lower Bound
Cost Estimation for Logic Programs. In 1997 International Logic Programming
Symposium, pages 291-305. MIT Press, Cambridge, MA, October 1997.

7. Mireille Ducassé. Opium: An extendable trace analyzer for prolog. J. Log. Pro-
gram., 39(l-3):177-223, 1999.

8. M. Hermenegildo, E. Albert, P. López-García, and G. Puebla. Abstraction Carry-
ing Code and Resource-Awareness. In Proc. of PPDP'05. ACM Press, July 2005.

9. M. Hermenegildo, G. Puebla, F. Bueno, and P. López-García. Integrated Program
Debugging, Verification, and Optimization Using Abstract Interpretation (and The
Ciao System Preprocessor). Science of Computer Programming, 58(1-2):115-140,
October 2005.

10. P. López-García. Non-faüure Analysis and Granularüy Control in Parallel Execu-
tion of Logic Programs. PhD thesis, Universidad Politécnica de Madrid (UPM),
Facultad Informática UPM, 28660-Boadilla del Monte, Madrid-Spain, June 2000.

11. P. López-García, M. Hermenegildo, and S.K. Debray. A Methodology for Granular-
ity Based Control of Parallelism in Logic Programs. J. of Symbolic Computation,
Special Issue on Parallel Symbolic Computation, 22:715-734, 1996.

12. S. A. Jarvis R. G. Morgan. Profiling large-scale lazy functional programs. Journal
of Functional Programing, 8(3):201-237, May 1998.

13. Patrick M. Sansom and Simón L. Peyton Jones. Formally based profiling for
higher-order functional languages. ACM Transactions on Programming Languages
and Systems, 19(2):334-385, March 1997.

14. D. Wackerly, W. Mendenhall, and R. Scheaffer. Mathematical Statistics With Ap­
plications 5th Edition. P W S Publishers, 1995.

