33 research outputs found

    Classification and mapping of Spanish Mediterranean mixed forests

    Get PDF
    Mixed forests play an important role in promoting forest functions and services, and showed better resilience to perturbations than monospecific forests. In the Mediterranean Basin they constitute an important share of the total forest area. However, although mixed forests have been described, classified and mapped in most of the Mediterranean regions around the world, in the Mediterranean Basin they remain neglected, with direct negative consequences for forest management and conservation strategies. Our objective is to present a reliable, uniform classification along with a map of the Spanish Mediterranean Mixed Forests (MMF) as a tool for their management and conservation in Spain. The digital Spanish Forest Map was analyzed to identify MMF. The most frequent tree species combinations were identified and their representativeness in terms of the total forest area was analyzed. In addition, to ensure environmental homogeneity in the proposed classification, the arrangement of each tree species combination within the Spanish Mediterranean ecoregions was evaluated using the Pearson Chi-square test. Based on our results, Spanish MMF currently cover 27.07% of the Mediterranean natural forest area. They were divided into 9 main ecological groups and 23 subtypes. The classification of Spanish MMF and the distribution map represent a first step towards recognizing the importance of mixed forests in the vegetation of the Mediterranean Basin. Together they may provide a valuable basis to improve future forest management, monitoring and conservation strategies both at national and European level

    Especies afectadas por el cambio climático: el melojo (Quercus pyrenaica)

    Get PDF
    Depto. de Biodiversidad, Ecología y EvoluciónFac. de Ciencias BiológicasTRUEpu

    The role of demography and grazing in the patterns of endangerment of threatened plants

    Get PDF
    This study explores the effect of two types of threat on a group of rare plants at risk of extinction in Spain, distributed across altitudinal and latitudinal gradients, under a scenario of rapid changes in land use. On the one hand, we focused on livestock herbivory as one source of risk for these plants, also taking into account factors such as altitude and the protection status of the area. On the other hand, we explored a threat which has been little documented so far, namely, rapid changes of the dynamics of plant communities. Field data from 54 populations of 37 different threatened plant species were analyzed using contingency tables and linear models (ANCOVA and GLM) to study the effect of livestock and herbivory. In addition, we used an asymmetry index of population structure to look for deviations and asynchronies with respect to general vegetation dynamics. Our results point to an overestimation of grazing as a threat to these plants, its effect having declined as a result of rapid changes in land use. Altitude was found to provide a dual conservation shield, preventing grazing for different reasons. Hence, we recommend that herbivory to threatened plants should be reported by accurately quantifying individual losses and damage. We found no relationship between population structure and plant conservation status. In addition, we detected no asynchronies between threatened plant population structure and community dynamics. New indicators related to size and distance between populations as well as density distribution within patches should be explored

    Abrupt fragmentation thresholds of eight zonal forest types in mainland Spain

    Get PDF
    This study quantifies patchiness of eight types of zonal forests in three biogeographic regions of mainland Spain (Atlantic, Alpine and Mediterranean) which together occupy 1,726,578 ha. Their dominant species and European Habitat Type codes (EU Directive 92/43 EEC) are: Fagus sylvatica (9120, 9130 and 9150), Quercus robur and Q. pyrenaica (9230), Q. suber (9330), Pinus uncinata (9430), P. nigra ssp. salzmannii (9530) and P. pinea (subset of 9540). We applied the Korcak’s exponent B, which describes a hyperbolic relationship between the cumulative frequency of the number of patches and their sizes. The objectives were: 1) detect possible patch size intervals in which B varies significantly, explicitly identifying area thresholds, and 2) contribute to development of a robust forest mass fragmentation indicator. Exponent B was found by segmented regression analysis. The vector data were extracted from a filtered version of the Spanish Forest Map 1:50,000 (1997–2006). After validating the procedure by applying it to a previously published dataset, we found that in all cases the patch size range could be split into two significant intervals around relatively small threshold areas of 27–101 ha. In the one on the left, the rate at which relatively large patches become less abundant was always very slow (B = 0.017–0.094). After this threshold had been passed, the rate increased abruptly (B = 1.100–2.590). Both this high fragmentation and its lack of parsimony were unexpected in zonal forest types. General interpretations converge to the coexistence of forest patches of different ages due to human pressure events.This work was supported by Tragsatec (Grupo Tragsa) [contract numbers 39.916 and 38.454]; and the Spanish National R&D&I Plan (including ERDF funds) [grant number CGL2016-78075-P]

    A dataset with complete geographic distributions of eight zonal monospecific forest types in mainland Spain

    Get PDF
    Distribution area and surface are both parameters of paramount importance for habitat management, monitoring and conservation. Here we present the distribution of eight zonal forest types of mainland Spain that are consistent with the Habitat Types (HT) listed in Annex I of the European Union Habitats Directive 92/43 EC. Their dominant species and HT codes are Fagus sylvatica (9120, 9130 and 9150), Quercus robur and Q. pyrenaica (9230), Q. suber (9330), Pinus uncinata (9430), P. nigra ssp. salzmannii (9530) and P. pinea (subset of 9540). These distributions are based on tesserae from the 1:50,000 Spanish Forest Map and are the result of sorting assisted by supplementary databases. The distributions are presented as vector coverages, and provide three information levels of increasing detail: geographic distribution, basic forest type and structural forest patch. Two R scripts are also included with the dataset. They implement a segmented regression approach to investigate forest fragmentation on these or other patch-like data.Tragsatec (Grupo Tragsa) funded this research through the following projects: Climatic Regionalization and Ecosystem Fragmentation (Contract No. 39.916) and Methods to Estimate Rates of Change of Occupied Surface of Forest and Shrubland Habitat Types within their Respective Distribution Ranges (Contract No. 38.454)

    Conservation strategies for endangered arable plant Euphorbia gaditana

    Get PDF
    Fragmentation and habitat loss are considered among the most important threats to biodiversity. More precisely, transformation of natural habitats into farmlands has been identified as one of the primary causes of plant species extinction. Therefore, understanding the effects of habitat fragmentation is crucial to the successful conservation of threatened species. Metapopulation modeling is one of the prospective tools used in conservation biology to evaluate long-term survival in fragmented landscapes. In this work, we applied a metapopulation approach to the conservation of the rare plant Euphorbia gaditana Coss., an endangered species growing on the margins of crops in southern Spain. The species is threatened due to herbicide application and intensification of cultivation, which results in a highly patchy distribution, with more than 50 patches of habitat across three separate networks of patches. We used IFM (Incidence Function Modeling) to compare the relative effectiveness of four conservation management scenarios and the effect of three threat scenarios on the risk of extinction of the species. The results of our simulations of population dynamics under plausible management scenarios will aid conservation decision-making, for example, allowing priority conservation areas to be identified or assessing the effect of future reintroductions

    Seguimiento de la biodiversidad en la era del Big Data

    Get PDF
    [ES], La diversidad biológica o biodiversidad es de vital importancia para la persistencia de los ecosistemas terrestres, ya que constituye el pilar que da estabilidad funcional a los sistemas naturales y proporciona una gran variedad de servicios ecosistémicos esenciales para el bienestar humano. Pero, ¿cuál es el estado actual de la biodiversidad? ¿Cómo estamos progresando con respecto a los obje- tivos de conservación establecidos para limitar o reducir la extinción de especies? ¿Cuáles son las principales presiones y amenazas para la biodiversidad derivadas del Cambio Global? Estas preguntas sólo pueden responderse si existe un conocimiento sólido sobre el estado y tendencias de aspectos esenciales que gobiernan los patrones y procesos de la biodiversidad a escalas espacio-temporales complementarias (Kühl et al. 2020). Este conocimiento es crucial para desarrollar políticas de conservación eficaces y una gestión medioambiental que revierta las tendencias de muchas poblaciones y comunidades actualmente en declive (IPBES 2019). Por este motivo, disponer de documentación exhaustiva derivada de programas de seguimiento de la distribución, estructura y funcionamiento de la biodiversidad, así como los efectos del Cambio Global sobre su conservación, son esenciales para alcanzar los objetivos de muchos reglamentos internacionales. Entre estas disposiciones destacan los objetivos estratégicos de las metas de Aichi, definidas para evaluar el progreso hacia los objetivos del Convenio sobre la Diversidad Biológica (CBD 2014). En concreto, el objetivo B: “Reducir las presiones directas sobre la biodiversidad y promover su uso sostenible’’ y C: ‘’Mejorar la situación de la biodiversidad salvaguardando los eco- sistemas, las especies y la diversidad genética’’, requieren un se- guimiento exhaustivo del estado y tendencias de la biodiversidad. Igualmente, la Agenda 2030 para los Objetivos de Desarrollo Sos- tenible, concretamente el ODS 14 ‘’La vida bajo el agua’’ y el ODS 15 ‘’La vida en la tierra’’, exigen un amplio esfuerzo para medir el progreso hacia el uso sostenible de los recursos naturales y la conservación de la biodiversidad en el agua y en la tierra (UN 2015). Dada la importancia de los datos para dar respuesta a estos desafíos, la Ecología, como otras ramas de la Biología y Ciencias de la Tierra, se ha hecho eco del fenómeno denominado “Big Data” o “Data Science”. El volumen mundial de datos se ha multiplicado nueve veces en los últimos años y continúa creciendo de forma ex- ponencial (Farley et al. 2018), lo que confirma el establecimiento y continuidad futuros de este paradigma que brinda nuevas oportunidades, pero también retos, ya que requiere de nuevas herramien- tas, técnicas, formas de trabajo y marcos teóricos (Kitchin 2014). Una mayoría de autores acepta el término Big Data, que em- pezó a usarse décadas recientes en el ámbito del comercio elec- trónico cuando las empresas privadas buscaban nuevas formas de desarrollar y controlar grandes cantidades de datos, principalmente para mejorar su rendimiento (McAfee y Brynjolfsson 2012; Kitchin 2014). El término se ha extendido después a muy diversos ámbitos, desde la política a la industria, y a diferentes ramas científicas, generando la necesidad de una definición universal del mismo. Aun- que esta definición es compleja y varía entre disciplinas, sí existe un consenso general sobre los elementos clave que caracterizan al Big Data. En términos generales, se define como la capacidad de gestionar y analizar datos, que a su vez deben caracterizarse a través de las denominadas 4Vs: volumen, velocidad, variedad y ve- racidad (Farley et al. 2018; Musvuugwa et al. 2021). El volumen se refiere a la gran cantidad de datos recopilados; la velocidad a la tasa con que se recopilan; la variedad alude a su estructura o he- terogeneidad y la veracidad indica su fiabilidad. En el contexto de este estudio, relacionado con el seguimiento de la biodiversidad, el Big Data se ha definido como una “herramienta tecno-política para gestionar la distribución de las especies y comunidades biológicas”, y como “la acumulación intensiva de información digitalizada de la distribución espacial y temporal de especies y comunidades” (De- victor y Bensaude-Vincent 2016). En esta monografía nos referimos a Big Data como un concepto amplio que considera la capacidad de gestionar y analizar una gran cantidad de datos espacio-tempo- rales y heterogéneos sobre seguimiento de la biodiversidad, flexi- bilizando así las características de volumen y velocidad.S
    corecore