38 research outputs found

    Nuevas estrategias docentes en Histología. Más aprendizaje y menos enseñanza: Uso de microscopios virtuales e Historrelatos.

    Get PDF
    Current teaching at the University needs novel methodologies to increase students’ motivation. Here, we present two approaches to engage the student body to Human Histology subject at the University of Malaga. Virtual teaching was propelled by the COVID-19 crisis and confinement. The software for the study of histological/histopathological samples has become a valuable tool. Moreover, digital competences are in high demand within the biomedical field but students usually do not receive sufficient training. For these reasons, we have implemented the use of virtual microscopy (VM, Olympus), sharing 66 digitalized slides accessible under a username/password. VM provides real-time dynamic microscopy and offers an innovative experience at exceptionally high resolution. VM allows students to explore the samples online from anywhere, favoring autonomy and self-learning. Moreover, VM enables capturing specific tissue areas using these pictures to ask specific questions. On the other hand, transversal competences such as reading and writing skills, along with synthesis capability can be underdeveloped in our students. We initiated the activity of writing stories about histology contents (Histostories). Professional graphic designers from a webpage of scientific divulgation (masscience.com) illustrated the first story about erythrocytes. We conducted a survey among medical students to analyze the impact of this narration on their learning. Most of them welcome the initiative, considering it as an appropriate and enjoyable instrument for summarizing and revising the concepts. Immunity was among the topics more demanded between the students. Finally, we encouraged our students to write their own Histostories mentored by our teaching staff. These stories are shared through the virtual campus and on masscience website. So far, two medical students are collaborating with us in this experimental project that we expect it will bring more benefits to both readers and participants.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Distinct Microglial Responses in Two Transgenic Murine Models of TAU Pathology

    Get PDF
    Microglial cells are crucial players in the pathological process of neurodegenerative diseases, such as Alzheimer’s disease (AD). Microglial response in AD has been principally studied in relation to amyloid-beta pathology but, comparatively, little is known about inflammatory processes associated to tau pathology. In the hippocampus of AD patients, where tau pathology is more prominent than amyloid-beta pathology, a microglial degenerative process has been reported. In this work, we have directly compared the microglial response in two different transgenic tau mouse models: ThyTau22 and P301S. Surprisingly, these two models showed important differences in the microglial profile and tau pathology. Where ThyTau22 hippocampus manifested mild microglial activation, P301S mice exhibited a strong microglial response in parallel with high phospho-tau accumulation. This differential phospho-tau expression could account for the different microglial response in these two tau strains. However, soluble (S1) fractions from ThyTau22 hippocampus presented relatively high content of soluble phospho-tau (AT8-positive) and were highly toxic for microglial cells in vitro, whereas the correspondent S1 fractions from P301S mice displayed low soluble phosphotau levels and were not toxic for microglial cells. Therefore, not only the expression levels but the aggregation of phospho-tau should differ between both models. In fact, most of tau forms in the P301S mice were aggregated and, in consequence, forming insoluble tau species.We conclude that different factors as tau mutations, accumulation, phosphorylation, and/or aggregation could account for the distinct microglial responses observed in these two tau models. For this reason, deciphering the molecular nature of toxic tau species for microglial cells might be a promising therapeutic approach in order to restore the deficient immunological protection observed in AD hippocampus.CIBERNEDJunta de Andalucía. Consejería de Economía, Innovación, Ciencia y Empleo CTS-2035Fundación Tatiana Pérez de Guzmán el BuenoMinisterio de Ciencia, Innovación y UniversidadesInstituto de Salud Carlos III. Fondo de Investigación Sanitaria. PI15/00957 PI15/00796Fondo Europeo de Desarrollo Regional PI15/00957 PI15/0079

    New teaching strategies in Histology. More learning and less teaching

    Get PDF
    Las transformaciones de la educación Médica conciernen a la Histología, ocasionando reducciones en la carga docente y asignación de créditos, redefinición de competencias y objetivos de aprendizaje, así como una creciente orientación médica de sus contenidos y una disminución de las clases magistrales. Por ello se hace necesario el empleo de nuevos métodos que se aproximen más al aprendizaje que a la enseñanza, pero que no supongan ni un aumento de la carga docente del alumnado ni un incremento de los ya hipertrofiados planes de estudios. En la Facultad de Medicina de Málaga hemos implementado nuevas metodologías docentes: orientación médica , clase inversa, ABP, microscopia virtual, HistolCasts), HistolWord, Instagram, Historrelatos), y evaluación continua . Sobre estas actividades los estudiantes han mostrado un alto grado de participación y satisfacción, estimulando su interés y motivación por la Histología y mejorando el rendimiento académico. Adicionalmente, muchas de estas estrategias se pueden extrapolar a otras áreas de la educación médica, tanto para estudiantes como para residentes y formación continuada. Algunas de estas metodologías ya han sido ya presentadas y otras lo serán por algunos de mis compañeros. Me voy a referir a continuación al HistolWord. Se trata de una actividad de gamificación basada en el juego del pasapalabra, empleando términos histológicos. Se formaron 32 equipos de 5 estudiantes que compitieron en un sistema de eliminatorias desde dieciseisavos de final, confeccionándose 70 roscos de palabras. Todo se desarrollaba en un aula con casi 200 estudiantes, donde se leían las preguntas y se proyectaba el rosco, de manera que no solo participaban los dos equipos que se enfrentaban en ese momento, sino todos los presentes. Los estudiantes indicaron la utilidad de HistolWord como motivación para el estudio, complemento de las clases, revisión y aplicaciones médicas, existiendo una correlación positiva con las calificaciones.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Distinct disease-sensitive GABAergic neurons in the perirhinal cortex of Alzheimer's mice and patients

    Get PDF
    Neuronal loss is the best neuropathological substrate that correlates with cortical atrophy and dementia in Alzheimer’s disease (AD). Defective GABAergic neuronal functions may lead to cortical network hyperactivity and aberrant neuronal oscilla-tions and in consequence, generate a detrimental alteration in memory processes. In this study, using immunohistochemical and stereological approaches, we report that the two major and non-overlapping groups of inhibitory interneurons (SOM-cells and PV-cells) displayed distinct vulnerability in the perirhinal cortex of APP/PS1 mice and AD patients. SOM-positive neurons were notably sensitive and exhibited a dramatic decrease in the perirhinal cortex of 6-month-old transgenic mice (57% and 61% in areas 36 and 35, respectively) and, most importantly, in AD patients (91% in Braak V–VI cases). In addition, this interneuron degenerative process seems to occur in parallel, and closely related, with the progression of the amyloid pathol-ogy. However, the population expressing PV was unaffected in APP/PS1 mice while in AD brains suffered a pronounced and significant loss (69%). As a key component of cortico-hippocampal networks, the perirhinal cortex plays an important role in memory processes, especially in familiarity-based memory recognition. Therefore, disrupted functional connectivity of this cortical region, as a result of the early SOM and PV neurodegeneration, might contribute to the altered brain rhythms and cognitive failures observed in the initial clinical phase of AD patients. Finally, these findings highlight the failure of amyloidogenic AD models to fully recapitulate the selective neuronal degeneration occurring in humans.Instituto de Salud Carlos III (ISCiii) de España y fondos FEDER de la Unión Europea. PI18/01557 y PI18/01556Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía. Proyecto de Excelencia CTS-2035Universidad de Málaga. PPIT.UMA.B1.2017/2

    Analyzing hippocampal synaptic damage and glial response in a mouse model of tauopathy

    Get PDF
    Tau pathology is highly related to synaptic and neuronal loss, leading to cognitive decline and dementia in Alzheimer’s disease (AD) and other tauopathies. Tau transgenic mice are widely used to investigate the specific contribution of this protein to AD since they reproduce the synaptic and cognitive dysfunction in parallel to an age-dependent accumulation of hyperphosphorylated forms of tau (phospho-tau). The aim of this study was to investigate the progression of tau aggregation and analyze its relationship with microglial activation and synaptic damage within the hippocampus of a transgenic tau model. 2, 6, 9, 12 and 18 month-old THY-Tau22 transgenic and WT mice were analyzed. Tau pathology was assessed by western blotting and immunohistochemistry (AT8, AT100). Confocal microscopy was used to study microglial/phospho-tau relationship, and Thioflavin-S staining to evidence fibrillar aggregates. Levels of general (Synaptophysin) and subtype-specific (ChAT, VGAT, VGLUT-1) synaptic proteins were determined by WB and immunohistochemistry. Inflammatory markers were assessed by quantitative PCR (CD45, CD68, TREM2), immunohistochemistry (Iba-1) and image analysis. Tau pathology was detectable in the hippocampus from 2 months of age and increased progressively during aging. Presynaptic protein levels were significantly decreased from 9-12 months compared to age-matched WT mice. Even though some inflammatory markers were slightly increased in the hippocampus, microglial reactivity was found to be generally attenuated and some cells even exhibited reduction in their prolongations and a clear degenerative phenotype at advanced ages similar to that seen in the hippocampus of AD patients. Finally, this model could be a relevant tool to further understand the specific role of tau in both microglial response and synaptic pathology in AD.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Microglia in Alzheimer’s Disease: Activated, Dysfunctional or Degenerative

    Get PDF
    Microglial activation has been considered a crucial player in the pathological process of multiple human neurodegenerative diseases. In some of these pathologies, such as Amyotrophic Lateral Sclerosis or Multiple Sclerosis, the immune system and microglial cells (as part of the cerebral immunity) play a central role. In other degenerative processes, such as Alzheimer’s disease (AD), the role of microglia is far to be elucidated. In this “mini-review” article, we briefly highlight our recent data comparing the microglial response between amyloidogenic transgenic models, such as APP/PS1 and AD patients. Since the AD pathology could display regional heterogeneity, we focus our work at the hippocampal formation. In APP based models a prominent microglial response is triggered around amyloid-beta (Aβ) plaques. These strongly activated microglial cells could drive the AD pathology and, in consequence, could be implicated in the neurodegenerative process observed in models. On the contrary, the microglial response in human samples is, at least, partial or attenuated. This patent difference could simply reflect the lower and probably slower Aβ production observed in human hippocampal samples, in comparison with models, or could reflect the consequence of a chronic long-standing microglial activation. Beside this differential response, we also observed microglial degeneration in Braak V–VI individuals that, indeed, could compromise their normal role of surveying the brain environment and respond to the damage. This microglial degeneration, particularly relevant at the dentate gyrus, might be mediated by the accumulation of toxic soluble phospho-tau species. The consequences of this probably deficient immunological protection, observed in AD patients, are unknown.España, Instituto de Salud Carlos III PI15/00957, PI15/00796España Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucia Proyecto de Excelencia CTS-203

    Litio como terapia neuroprotectora en el modelo appsl/ps1m146l de la enfermedad de Alzheimer

    Get PDF
    El litio se utiliza desde hace varias décadas en el tratamiento de trastornos bipolares y la depresión, y recientemente se debate su uso potencial en patologías neurodegenerativas como la enfermedad de Alzheimer (AD)

    Phagocytic clearance of presynaptic dystrophies by reactive astrocytes in Alzheimer's disease

    Get PDF
    Reactive astrogliosis, a complex process characterized by cell hypertrophy and upregulation ofcomponents of intermediate filaments, is a common feature in brains of Alzheimer’s patients. Reac-tive astrocytes are found in close association with neuritic plaques; however, the precise role ofthese glial cells in disease pathogenesis is unknown. In this study, using immunohistochemical tech-niques and light and electron microscopy, we report that plaque-associated reactive astrocytesenwrap, engulf and may digest presynaptic dystrophies in the hippocampus of amyloid precursorprotein/presenilin-1 (APP/PS1) mice. Microglia, the brain phagocytic population, was apparentlynot engaged in this clearance. Phagocytic reactive astrocytes were present in 35% and 67% ofamyloid plaques at 6 and 12 months of age, respectively. The proportion of engulfed dystrophicneurites was low, around 7% of total dystrophies around plaques at both ages. This fact, alongwith the accumulation of dystrophic neurites during disease course, suggests that the efficiency ofthe astrocyte phagocytic process might be limited or impaired. Reactive astrocytes surroundingand engulfing dystrophic neurites were also detected in the hippocampus of Alzheimer’spatientsby confocal and ultrastructural analysis. We posit that the phagocytic activity of reactive astrocytesmight contribute to clear dysfunctional synapses or synaptic debris, thereby restoring impairedneural circuits and reducing the inflammatory impact of damaged neuronal parts and/or limitingthe amyloid pathology. Therefore, potentiation of the phagocytic properties of reactive astrocytesmay represent a potential therapy in Alzheimer s disease.Fondo de Investigación Sanitaria (FIS). Instituto de Salud Carlos III (ISCiii) de España y fondos FEDER de la Unión Europea. PI15/00796 y PI15/00957Fundación La Marató-TV3 de Cataluña, España. 20141432, 20141431, 20141433, y 20141430Centro de investigación en red de enfermedades neurodegenerativas (CIBERNED) de España. PI2015-2/02Junta de Andalucía. Proyecto de Excelencia CTS-203

    Plaque-Associated Oligomeric Amyloid-Beta Drives Early Synaptotoxicity in APP/PS1 Mice Hippocampus: Ultrastructural Pathology Analysis

    Get PDF
    Alzheimer’s disease (AD) is a devastating neurodegenerative disorder characterized by initial memory impairments that progress to dementia. In this sense, synaptic dysfunction and loss have been established as the pathological features that best correlate with the typical early cognitive decline in this disease. At the histopathological level, post mortem AD brains typically exhibit intraneuronal neurofibrillary tangles (NFTs) along with the accumulation of amyloid-beta (Abeta) peptides in the form of extracellular deposits. Specifically, the oligomeric soluble forms of Abeta are considered the most synaptotoxic species. In addition, neuritic plaques are Abeta deposits surrounded by activated microglia and astroglia cells together with abnormal swellings of neuronal processes named dystrophic neurites. These periplaque aberrant neurites are mostly presynaptic elements and represent the first pathological indicator of synaptic dysfunction. In terms of losing synaptic proteins, the hippocampus is one of the brain regions most affected in AD patients. In this work, we report an early decline in spatial memory, along with hippocampal synaptic changes, in an amyloidogenic APP/PS1 transgenic model. Quantitative electron microscopy revealed a spatial synaptotoxic pattern around neuritic plaques with significant loss of periplaque synaptic terminals, showing rising synapse loss close to the border, especially in larger plaques. Moreover, dystrophic presynapses were filled with autophagic vesicles in detriment of the presynaptic vesicular density, probably interfering with synaptic function at very early synaptopathological disease stages. Electron immunogold labeling showed that the periphery of amyloid plaques, and the associated dystrophic neurites, was enriched in Abeta oligomers supporting an extracellular location of the synaptotoxins. Finally, the incubation of primary neurons with soluble fractions derived from 6-month-old APP/PS1 hippocampus induced significant loss of synaptic proteins, but not neuronal death. Indeed, this preclinical transgenic model could serve to investigate therapies targeted at initial stages of synaptic dysfunction relevant to the prodromal and early AD.Instituto de Salud Carlos III (ISCiii) FEDER funds PI18/01557 and PI18/01556Junta de Andalucia UMA18-FEDERJA-211, P18-RT-2233 and US-126273Spanish Minister of Science and Innovation PID2019-108911RA-100, PID2019-107090RA-I00 and RYC-2017-21879Malaga University B1-2019_07 and B1-2019_0
    corecore