161 research outputs found
Cell therapy for spinal cord injury with Olfactory Ensheathing Glia Cells (OECs)
This is the peer reviewed version of the following article: Gómez RM, Sánchez MY, Portela-Lomba M, et al. Cell therapy for spinal cord injury with olfactoryensheathing glia cells (OECs). Glia. 2018;00:1–35
which has been published in final form at GLIA 13 January (2018) http://doi.org/10.1002/glia.23282. © 2018 Wiley Periodicals This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.The prospects of achieving regeneration in the central nervous system (CNS) have changed, asmost recent findings indicate that several species, including humans, can produce neurons in adult-hood. Studies targeting this property may be considered as potential therapeutic strategies torespond to injury or the effects of demyelinating diseases in the CNS. While CNS trauma mayinterrupt the axonal tracts that connect neurons with their targets, some neurons remain alive, asseen in optic nerve and spinal cord (SC) injuries (SCIs). The devastating consequences of SCIs aredue to the immediate and significant disruption of the ascending and descending spinal pathways,which result in varying degrees of motor and sensory impairment. Recent therapeutic studies forSCI have focused on cell transplantation in animal models, using cells capable of inducing axonregeneration like Schwann cells (SchCs), astrocytes, genetically modified fibroblasts and olfactoryensheathing glia cells (OECs). Nevertheless, and despite the improvements in such cell-based ther-apeutic strategies, there is still little information regarding the mechanisms underlying the successof transplantation and regarding any secondary effects. Therefore, further studies are needed to clarify these issues. In this review, we highlight the properties of OECs that make them suitable toachieve neuroplasticity/neuroregeneration in SCI. OECs can interact with the glial scar, stimulateangiogenesis, axon outgrowth and remyelination, improving functional outcomes following lesion.Furthermore, we present evidence of the utility of cell therapy with OECs to treat SCI, both fromanimal models and clinical studies performed on SCI patients, providing promising results for future treatments
Effects of excitotoxic lesion with inhaled anesthetics on nervous system cells of rodents
Different anesthesia methods can variably influence excitotoxic lesion effects on the brain. The main purpose of this review is to identify potential differences in the toxicity to nervous system cells of two common inhalation anesthesia methods, isoflurane and sevoflurane, used in combination with an excitotoxic lesion procedure in rodents. The use of bioassays in animal models has provided the opportunity to examine the role of specific molecules and cellular interactions that underlie important aspects of neurotoxic effects relating to calcium homeostasis and apoptosis activation. Processes induced by NMDA antagonist drugs involve translocation of Bax protein to mitochondrial membranes, allowing extra-mitochondrial leakage of cytochrome c, followed by sequence of changes that ending in activation of CASP-3. The literature demonstrates that the use of these anesthetics in excitotoxic surgery increases neuroinflammation activity facilitating the effects of apoptosis and necrosis on nervous system cells, depending on the concentration and exposure duration of the anesthetic. High numbers of microglia and astrocytes and high levels of proinflammatory cytokines and caspase activation possibly mediate these inflammatory responses. However, it is necessary to continue studies in rodents to understand the effect of the use of inhaled anesthetics with excitotoxic lesions in different developmental stages, including newborns, juveniles and adults. Understanding the mechanisms of regulation of cell death during development can potentially provide tools to promote neuroprotection and eventually achieve the repair of the nervous system in pathological conditions
Observation of charge asymmetry dependence of pion elliptic flow and the possible chiral magnetic wave in heavy-ion collisions
We present measurements of and elliptic flow, , at
midrapidity in Au+Au collisions at 200, 62.4, 39, 27,
19.6, 11.5 and 7.7 GeV, as a function of event-by-event charge asymmetry,
, based on data from the STAR experiment at RHIC. We find that
() elliptic flow linearly increases (decreases) with charge asymmetry
for most centrality bins at and higher.
At , the slope of the difference of
between and as a function of exhibits a
centrality dependence, which is qualitatively similar to calculations that
incorporate a chiral magnetic wave effect. Similar centrality dependence is
also observed at lower energies.Comment: 6 pages, 4 figure
Centrality and transverse momentum dependence of elliptic flow of multi-strange hadrons and meson in Au+Au collisions at = 200 GeV
We present high precision measurements of elliptic flow near midrapidity
() for multi-strange hadrons and meson as a function of
centrality and transverse momentum in Au+Au collisions at center of mass energy
200 GeV. We observe that the transverse momentum dependence of
and is similar to that of and , respectively,
which may indicate that the heavier strange quark flows as strongly as the
lighter up and down quarks. This observation constitutes a clear piece of
evidence for the development of partonic collectivity in heavy-ion collisions
at the top RHIC energy. Number of constituent quark scaling is found to hold
within statistical uncertainty for both 0-30 and 30-80 collision
centrality. There is an indication of the breakdown of previously observed mass
ordering between and proton at low transverse momentum in the
0-30 centrality range, possibly indicating late hadronic interactions
affecting the proton .Comment: 7 pages and 4 figures, Accepted for publication in Physical Review
Letter
Azimuthal anisotropy in U+U and Au+Au collisions at RHIC
Collisions between prolate uranium nuclei are used to study how particle
production and azimuthal anisotropies depend on initial geometry in heavy-ion
collisions. We report the two- and four-particle cumulants, and
, for charged hadrons from U+U collisions at =
193 GeV and Au+Au collisions at = 200 GeV. Nearly fully
overlapping collisions are selected based on the amount of energy deposited by
spectators in the STAR Zero Degree Calorimeters (ZDCs). Within this sample, the
observed dependence of on multiplicity demonstrates that ZDC
information combined with multiplicity can preferentially select different
overlap configurations in U+U collisions. An initial-state model with gluon
saturation describes the slope of as a function of multiplicity in
central collisions better than one based on Glauber with a two-component
multiplicity model.Comment: Final paper version accepted for publication in Phys. Rev. Lett. New
version includes comparisons to a constituent quark glauber mode
Centrality dependence of identified particle elliptic flow in relativistic heavy ion collisions at sqrt(s)= 7.7--62.4 GeV
Elliptic flow (v_2) values for identified particles at midrapidity in Au + Au
collisions measured by the STAR experiment in the Beam Energy Scan at the
Relativistic Heavy Ion Collider at sqrt{s_{NN}}= 7.7--62.4 GeV are presented
for three centrality classes. The centrality dependence and the data at
sqrt{s_{NN}}= 14.5 GeV are new. Except at the lowest beam energies we observe a
similar relative v_2 baryon-meson splitting for all centrality classes which is
in agreement within 15% with the number-of-constituent quark scaling. The
larger v_2 for most particles relative to antiparticles, already observed for
minimum bias collisions, shows a clear centrality dependence, with the largest
difference for the most central collisions. Also, the results are compared with
A Multiphase Transport Model and fit with a Blast Wave model.Comment: 14 pages, 12 figures, Phys. Rev. C, to be published. Data tables
available at
https://drupal.star.bnl.gov/STAR/publications/centrality-dependence-identified-particle-elliptic-flow-relativistic-heavy-ion-collisi
- …