161 research outputs found

    Cell therapy for spinal cord injury with Olfactory Ensheathing Glia Cells (OECs)

    Full text link
    This is the peer reviewed version of the following article: Gómez RM, Sánchez MY, Portela-Lomba M, et al. Cell therapy for spinal cord injury with olfactoryensheathing glia cells (OECs). Glia. 2018;00:1–35 which has been published in final form at GLIA 13 January (2018) http://doi.org/10.1002/glia.23282. © 2018 Wiley Periodicals This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.The prospects of achieving regeneration in the central nervous system (CNS) have changed, asmost recent findings indicate that several species, including humans, can produce neurons in adult-hood. Studies targeting this property may be considered as potential therapeutic strategies torespond to injury or the effects of demyelinating diseases in the CNS. While CNS trauma mayinterrupt the axonal tracts that connect neurons with their targets, some neurons remain alive, asseen in optic nerve and spinal cord (SC) injuries (SCIs). The devastating consequences of SCIs aredue to the immediate and significant disruption of the ascending and descending spinal pathways,which result in varying degrees of motor and sensory impairment. Recent therapeutic studies forSCI have focused on cell transplantation in animal models, using cells capable of inducing axonregeneration like Schwann cells (SchCs), astrocytes, genetically modified fibroblasts and olfactoryensheathing glia cells (OECs). Nevertheless, and despite the improvements in such cell-based ther-apeutic strategies, there is still little information regarding the mechanisms underlying the successof transplantation and regarding any secondary effects. Therefore, further studies are needed to clarify these issues. In this review, we highlight the properties of OECs that make them suitable toachieve neuroplasticity/neuroregeneration in SCI. OECs can interact with the glial scar, stimulateangiogenesis, axon outgrowth and remyelination, improving functional outcomes following lesion.Furthermore, we present evidence of the utility of cell therapy with OECs to treat SCI, both fromanimal models and clinical studies performed on SCI patients, providing promising results for future treatments

    Effects of excitotoxic lesion with inhaled anesthetics on nervous system cells of rodents

    Get PDF
    Different anesthesia methods can variably influence excitotoxic lesion effects on the brain. The main purpose of this review is to identify potential differences in the toxicity to nervous system cells of two common inhalation anesthesia methods, isoflurane and sevoflurane, used in combination with an excitotoxic lesion procedure in rodents. The use of bioassays in animal models has provided the opportunity to examine the role of specific molecules and cellular interactions that underlie important aspects of neurotoxic effects relating to calcium homeostasis and apoptosis activation. Processes induced by NMDA antagonist drugs involve translocation of Bax protein to mitochondrial membranes, allowing extra-mitochondrial leakage of cytochrome c, followed by sequence of changes that ending in activation of CASP-3. The literature demonstrates that the use of these anesthetics in excitotoxic surgery increases neuroinflammation activity facilitating the effects of apoptosis and necrosis on nervous system cells, depending on the concentration and exposure duration of the anesthetic. High numbers of microglia and astrocytes and high levels of proinflammatory cytokines and caspase activation possibly mediate these inflammatory responses. However, it is necessary to continue studies in rodents to understand the effect of the use of inhaled anesthetics with excitotoxic lesions in different developmental stages, including newborns, juveniles and adults. Understanding the mechanisms of regulation of cell death during development can potentially provide tools to promote neuroprotection and eventually achieve the repair of the nervous system in pathological conditions

    Observation of charge asymmetry dependence of pion elliptic flow and the possible chiral magnetic wave in heavy-ion collisions

    Get PDF
    We present measurements of π\pi^- and π+\pi^+ elliptic flow, v2v_2, at midrapidity in Au+Au collisions at sNN=\sqrt{s_{_{\rm NN}}} = 200, 62.4, 39, 27, 19.6, 11.5 and 7.7 GeV, as a function of event-by-event charge asymmetry, AchA_{ch}, based on data from the STAR experiment at RHIC. We find that π\pi^- (π+\pi^+) elliptic flow linearly increases (decreases) with charge asymmetry for most centrality bins at sNN=27 GeV\sqrt{s_{_{\rm NN}}} = \text{27 GeV} and higher. At sNN=200 GeV\sqrt{s_{_{\rm NN}}} = \text{200 GeV}, the slope of the difference of v2v_2 between π\pi^- and π+\pi^+ as a function of AchA_{ch} exhibits a centrality dependence, which is qualitatively similar to calculations that incorporate a chiral magnetic wave effect. Similar centrality dependence is also observed at lower energies.Comment: 6 pages, 4 figure

    Centrality and transverse momentum dependence of elliptic flow of multi-strange hadrons and ϕ\phi meson in Au+Au collisions at sNN\sqrt{s_{NN}} = 200 GeV

    Full text link
    We present high precision measurements of elliptic flow near midrapidity (y<1.0|y|<1.0) for multi-strange hadrons and ϕ\phi meson as a function of centrality and transverse momentum in Au+Au collisions at center of mass energy sNN=\sqrt{s_{NN}}= 200 GeV. We observe that the transverse momentum dependence of ϕ\phi and Ω\Omega v2v_{2} is similar to that of π\pi and pp, respectively, which may indicate that the heavier strange quark flows as strongly as the lighter up and down quarks. This observation constitutes a clear piece of evidence for the development of partonic collectivity in heavy-ion collisions at the top RHIC energy. Number of constituent quark scaling is found to hold within statistical uncertainty for both 0-30%\% and 30-80%\% collision centrality. There is an indication of the breakdown of previously observed mass ordering between ϕ\phi and proton v2v_{2} at low transverse momentum in the 0-30%\% centrality range, possibly indicating late hadronic interactions affecting the proton v2v_{2}.Comment: 7 pages and 4 figures, Accepted for publication in Physical Review Letter

    Azimuthal anisotropy in U+U and Au+Au collisions at RHIC

    Full text link
    Collisions between prolate uranium nuclei are used to study how particle production and azimuthal anisotropies depend on initial geometry in heavy-ion collisions. We report the two- and four-particle cumulants, v2{2}v_2\{2\} and v2{4}v_2\{4\}, for charged hadrons from U+U collisions at sNN\sqrt{s_{\rm NN}} = 193 GeV and Au+Au collisions at sNN\sqrt{s_{\rm NN}} = 200 GeV. Nearly fully overlapping collisions are selected based on the amount of energy deposited by spectators in the STAR Zero Degree Calorimeters (ZDCs). Within this sample, the observed dependence of v2{2}v_2\{2\} on multiplicity demonstrates that ZDC information combined with multiplicity can preferentially select different overlap configurations in U+U collisions. An initial-state model with gluon saturation describes the slope of v2{2}v_2\{2\} as a function of multiplicity in central collisions better than one based on Glauber with a two-component multiplicity model.Comment: Final paper version accepted for publication in Phys. Rev. Lett. New version includes comparisons to a constituent quark glauber mode

    Centrality dependence of identified particle elliptic flow in relativistic heavy ion collisions at sqrt(s)= 7.7--62.4 GeV

    Full text link
    Elliptic flow (v_2) values for identified particles at midrapidity in Au + Au collisions measured by the STAR experiment in the Beam Energy Scan at the Relativistic Heavy Ion Collider at sqrt{s_{NN}}= 7.7--62.4 GeV are presented for three centrality classes. The centrality dependence and the data at sqrt{s_{NN}}= 14.5 GeV are new. Except at the lowest beam energies we observe a similar relative v_2 baryon-meson splitting for all centrality classes which is in agreement within 15% with the number-of-constituent quark scaling. The larger v_2 for most particles relative to antiparticles, already observed for minimum bias collisions, shows a clear centrality dependence, with the largest difference for the most central collisions. Also, the results are compared with A Multiphase Transport Model and fit with a Blast Wave model.Comment: 14 pages, 12 figures, Phys. Rev. C, to be published. Data tables available at https://drupal.star.bnl.gov/STAR/publications/centrality-dependence-identified-particle-elliptic-flow-relativistic-heavy-ion-collisi
    corecore