3,462 research outputs found

    An integration of partial evaluation in a generic abstract interpretation framework

    Get PDF
    Information generated by abstract interpreters has long been used to perform program specialization. Additionally, if the abstract interpreter generates a multivariant analysis, it is also possible to perform múltiple specialization. Information about valúes of variables is propagated by simulating program execution and performing fixpoint computations for recursive calis. In contrast, traditional partial evaluators (mainly) use unfolding for both propagating valúes of variables and transforming the program. It is known that abstract interpretation is a better technique for propagating success valúes than unfolding. However, the program transformations induced by unfolding may lead to important optimizations which are not directly achievable in the existing frameworks for múltiple specialization based on abstract interpretation. The aim of this work is to devise a specialization framework which integrates the better information propagation of abstract interpretation with the powerful program transformations performed by partial evaluation, and which can be implemented via small modifications to existing generic abstract interpreters. With this aim, we will relate top-down abstract interpretation with traditional concepts in partial evaluation and sketch how the sophisticated techniques developed for controlling partial evaluation can be adapted to the proposed specialization framework. We conclude that there can be both practical and conceptual advantages in the proposed integration of partial evaluation and abstract interpretation

    Providing Diverse Trainees an Early and Transparent Introduction to Academic Appointment and Promotion Processes.

    Get PDF
    IntroductionThe growth in number of medical schools and increased numbers of faculty tracks have combined with evolving criteria for promotion to trigger a call for greater transparency of academic appointment and promotion processes. Most vulnerable to confusion about these changes are first-generation and diverse medical students and residents, the upstream pipeline of the academic medicine workforce. Diverse medical students have expressed diminished interest in academia because of perceived obstacles in appointment and promotion processes.MethodsThis workshop was designed to utilize didactics and career reflection exercises to help trainees learn: (1) how to define core terms related to academic appointment and promotion processes, (2) how to compare data elements for different CVs and portfolios, (3) common steps in submitting a promotion package, and (4) that they can immediately begin to document content for academic CVs, portfolios, and promotion packages.ResultsOne hundred forty-five diverse participants completed an evaluation at eight conferences across the U.S. More than 90% strongly agreed or agreed that the aforementioned objectives were met. Participants commented that the workshop was "illuminating," was "very informative," and "provided an inside look of how faculty are evaluated." Results showed an immediate impact on participants' self-reported confidence to negotiate appointment and promotion processes.DiscussionIncreases in self-rated confidence to negotiate appointment and promotion processes may help sustain trainees' interest in becoming future faculty. Further monitoring will be needed to determine if early exposure to these concepts improves probability of seeking, obtaining, and maintaining appointments

    Bismuth incorporation and the role of ordering in GaAsBi/GaAs structures

    Get PDF
    The structure and composition of single GaAsBi/GaAs epilayers grown by molecular beam epitaxy were investigated by optical and transmission electron microscopy techniques. Firstly, the GaAsBi layers exhibit two distinct regions and a varying Bi composition profile in the growth direction. In the lower (25 nm) region, the Bi content decays exponentially from an initial maximum value, while the upper region comprises an almost constant Bi content until the end of the layer. Secondly, despite the relatively low Bi content, CuPtB-type ordering was observed both in electron diffraction patterns and in fast Fourier transform reconstructions from high-resolution transmission electron microscopy images. The estimation of the long-range ordering parameter and the development of ordering maps by using geometrical phase algorithms indicate a direct connection between the solubility of Bi and the amount of ordering. The occurrence of both phase separation and atomic ordering has a significant effect on the optical properties of these layers

    Perirhinal cortex lesions impair tests of object recognition memory but spare novelty detection

    Get PDF
    This article is protected by copyright. All rights reserved. Acknowledgements This work was supported by the Wellcome Trust (WT103722/Z/14/Z). The authors wish to thank L. Kinnavane and J. M. Pearce for their contributions to the manuscript. The authors confirm that they have no known conflicts of interest.Peer reviewedPublisher PD

    [S IV] in the NGC 5253 Supernebula: Ionized Gas Kinematics at High Resolution

    Get PDF
    The nearby dwarf starburst galaxy NGC 5253 hosts a deeply embedded radio-infrared supernebula excited by thousands of O stars. We have observed this source in the 10.5{\mu}m line of S+3 at 3.8 kms-1 spectral and 1.4" spatial resolution, using the high resolution spectrometer TEXES on the IRTF. The line profile cannot be fit well by a single Gaussian. The best simple fit describes the gas with two Gaussians, one near the galactic velocity with FWHM 33.6 km s-1 and another of similiar strength and FWHM 94 km s-1 centered \sim20 km s-1 to the blue. This suggests a model for the supernebula in which gas flows towards us out of the molecular cloud, as in a "blister" or "champagne flow" or in the HII regions modelled by Zhu (2006).Comment: Accepted for publication in the Astrophysical Journal 4 June 201

    Multipole interaction between atoms and their photonic environment

    Get PDF
    Macroscopic field quantization is presented for a nondispersive photonic dielectric environment, both in the absence and presence of guest atoms. Starting with a minimal-coupling Lagrangian, a careful look at functional derivatives shows how to obtain Maxwell's equations before and after choosing a suitable gauge. A Hamiltonian is derived with a multipolar interaction between the guest atoms and the electromagnetic field. Canonical variables and fields are determined and in particular the field canonically conjugate to the vector potential is identified by functional differentiation as minus the full displacement field. An important result is that inside the dielectric a dipole couples to a field that is neither the (transverse) electric nor the macroscopic displacement field. The dielectric function is different from the bulk dielectric function at the position of the dipole, so that local-field effects must be taken into account.Comment: 17 pages, to be published in Physical Review
    corecore