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1 Introduction 
Partial evaluation [JGS93, DGT96] specializes programs for known valúes of the input. Partial 
evaluation of logic programs has received considerable attention [Neu90, LS91, Sah93, Gal93, 
Leu97] and several algorithms parameterized by different control strategies have been proposed 
which produce useful partial evaluations of programs. Regarding the correctness of such transfor-
mations, two conditions, defined on the set of atoms to be partially evaluated, have been identiñed 
which which ensure correctness of the transformation: "closedness" and "independence" [LS91]. 

From a practical point of view, effectiveness, that is, finding suitable control strategies which 
provide an appropriate level of specialization while ensuring termination, is a crucial problem which 
has also received considerable attention. Much work has been devoted to the study of such control 
strategies in the context of "on-line" partial evaluation of logic programs [MG95, LD97, LM96]. 
Usually, control is divided into components: "local control," which controls the unfolding for a 
given atom, and "global control," which ensures that the set of atoms for which a partial evaluation 
is to be computed remains finite. 

In most of the practical program specialization algorithms, the above mentioned control strate­
gies use, to a greater or lesser degree, information generated by static program analysis. One of 
the most widely used techniques for static analysis is abstract interpretation [CC77, CC92]. Some 
of the relations between abstract interpretation and partial evaluation have been identiñed before 
[GCS88, GH91, Gal92, CK93, PH95, LS96]. However, the role of analysis is so fundamental that it 
can be asked whether partial evaluation could be achieved directly by a generic abstract interpre­
tation system such as [Bru91, MH92, CV94]. With this question in mind, we present a method for 
generating a specialized program directly from the output (an and-or graph) of a generic abstract 
interpreter, in particular the PLAI system [MH89, MH90, MH92]. We then explore two main 
questions which arise. Firstly, how much specialization can be performed by an abstract inter­
preter, compared to partial evaluation? Secondly, how do the traditional problems of local and 
global control appear when placed in the setting of generic abstract interpretation? We conclude 
that although further study is needed, there seem to be some practical and conceptual advantages 
in using an abstract interpreter to perform program specialization. 

2 Abstract Interpretation 

Abstract interpretation [CC77] is a technique for static analysis in which execution of the program 
is simulated on an abstract domain (Da) which is simpler than the actual, concrete domain (D). 
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Figure 1: And-or analysis graph 

Abstract valúes and sets of concrete valúes are related via a pair of monotonic mappings {a,-y): 
abstraction a : D >->• Da, and concretization 7 : Da >->• D. 

Goal dependent abstract interpretation takes as input a program P, a predicate symbol1 p 
(denoting the exported predicate), and, optionally, a restriction of the run-time bindings of p 
expressed as an abstract substitution A. Such an abstract interpretation computes a set of triples 
Analysis(P,p,X,Da) = {(pi, \{,\{),..., (pn,K,K)} such that V« = l..n V9C e 7(A?) ií Pi9c 

succeeds in P with computed answer 9S then 9S £ 7(Af). Additionally, Vp¿#¿ that occurs in the 
concrete computation of p9 s.t 9 £ 7(A) where p is the exported predicate and A the description 
of the initial calis of p 3(pj,AJ,AJ) £ Analysis(P,p, A, Da) s.t. p¿ = p¿ and 9 £ 7(A|). This 
condition is related to the closedness condition usually required in partial evaluation. In abstract 
interpretation, _L denotes the abstract substitution such that 7(-L) — 0. A tupie (p¿,A|,-L) indi-
cates that all calis to predicate pj with substitution 9 £ 7(A|) either fail or loop, i.e., they do not 
produce any success substitutions. An analysis is said to be multivariant on calis if more than 
one triple {p, AJ, X{),..., {p, AJj, A^) n > 0 with A¿ ^ Aj for some i,j may be computed for the 
same predicate.2 If analysis is multivariant on successes, the triples in Analysis(P,p, A, Da) will 
be of the form (p¿, A¿, Sf) where S- = {Xft,..., Af.} with j > 0. Different analyses may be defined 
with different levéis of multivariance [VDCM93]. However, unless the analysis is multivariant on 
calis, little specialization may be expected in general. Due to space limitations we will limit the 
discussion to analyses (such as the original analysis algorithm in PLAI) which are multivariant on 
calis but not on successes, though multivariant successes can also be captured by certain abstract 
domains, as will be discussed in Section 5. In our case, in order to compute Analysis(P,p, A, Da), 
an and-or graph is constructed which encodes dependencies among the different triples. Note that 
when several success substitutions have been computed for the same or-node, the different substi­
tutions have to be summarized in a more general one (possibly losing accuracy) before propagating 
this success information. This is done by means of the least upper bound (lub) operator. Finiteness 
of the and-or graph (and thus termination of analysis) is achieved by considering abstract domains 
with certain characteristics (such as being finite, or of finite height, or without infinite ascending 
chains) or by the use of a widening operator [CC77]. 

Example 2.1 Consider the simple example program below taken from [Leu97]. Figure 1 depicts 
a possible result of analysis for the goal p(A) with A unrestricted using the concrete domain as 
abstract domain. 

p (X) : - q(X), r (X) . 
q ( a ) . 
r ( a ) . 
r ( b ) . 

1Extending the framework to sets of predicate symbols is trivial. 
2If n = 0 then the corresponding predicate is not needed for solving any goal in the considered class (p, A) and 

is thus dead-code and may be eliminated. 



We do not describe here how to build analysis and-or graphs. Details can be found in [Bru91, 
MH90, MH92]. The graph has two sorts of nodes: those which correspond to atoms (called or-
nodes) and those which correspond to clauses (called and-nodes). Or-nodes are triples (p¿, A¿, Af). 
For clarity, in the figures the atom is superscripted with Ac to the left and As to the right of 
the atom respectively. For example, the or-node (p(A), {}, {A/a}) is depicted in the figure as 
í}p(A)íA/a\ And-nodes are pairs (Id, Subs) where Id is a unique identifier for the node and 
Subs represents the head unifications of the clause the node refers to. In the figures, they are 
represented as triangles and the head unifications are depicted to their right. Finally, squares are 
used to represent the empty (true) atom. Or-nodes have ares to and-nodes which represent the 
clauses with which the atom (possibly) unifies. Clearly, if an or-node has no children, the atom 
will fail. And-nodes have ares to or-nodes for the corresponding predicate p and cali pattern Ac. 
If a node (p, Ac, _) is already in the tree it becomes a recursive cali and As is obtained by means 
of a fixpoint computation. • 

3 Code Generation from an And—Or Graph 

After introducing some notation we present an algorithm which generates a logic program from 
an analysis and-or graph. This idea was already exploited in [Win92, PH95]. A program P is a 
sequence of clauses of the form H : - B where H is an atom and i? is a possibly empty conjunction 
of atoms. The sequence of clauses in a program which define a predicate p is denoted by def(p). 
We denote by or(AO) the set of or-nodes in an and-or graph AO. Given a node N, children(N) 
is the sequence of nodes Ni :: . . . :: Nn n > 0 such that there is an are from N to N' in AO 
iff N' = N for some i and Vi,j = 0 , . . . ,n N is to the left of Nó in AO iff i < j . Note that 
children(N) may be applied both to or- and and-nodes. We assume the existence of an injective 
function pred which given AO(P,p,X,Da) returns a unique predicate ñame for each or-node in 
the graph and pred((p(í), A, As)) = p iff {p(t),X, Xs) is a root node in the graph (to ensure that 
top-level - exported - predicate ñames are maintained). 

Definition 1 (partial concretization) Given an abstract substitution A, a substitution 9 is a 
partial concretization of A and is denoted 9 £ part-conc(X) iff W € 7(A) 39" s.t. 9' = 99". 

part-conc(X) can be regarded as containing (part of) the definite information about concrete 
bindings that the abstract substitution A captures. Note that different partial concretizations of 
an abstract substitution A with different aecuracy may be considered. For example if the abstract 
domain is a depth-k abstraction and A = {X/f(f(Y))orX/f(a)}, a most aecurate part-Conc(X) is 
{X/f(Z)}. Note also that VA e € part-Cont(X) where e is the empty substitution. 

Basically, the algorithm for code generation (Algorithm 1) given below creates a different 
versión for each different (abstract) cali substitution Ac to the predicate p in the original program. 
This is easily done by associating a versión to each or-node. Note that if we always take the trivial 
substitution e as part-canc(X) for any A (such as in [PH95]) then such versions are identical except 
that atoms in clause bodies are renamed to always cali the appropriate versión. The interest in 
doing the proposed múltiple specialization is that the new program may be subject to further 
optimizations which were not possible in the original program. Additionally, in Algorithm 1 
predicates whose success substitution is _L are directly defined as p(t) : —fail, as it is known that 
they produce no answers. Even if the success substitution for the predicate (or-node) is not _L, 
individual clauses for p whose success substitution is _L (useless clauses) are removed from the 
final program. 

Algorithm 1 (Code Generation) Given an analysis and-or graph AO(P,p, X,Da) generated 
by analysis for a program P and an atomic goal «— p with abstract substitution A £ Da do: 

• For each non-empty or-node N = {a(t),Xc,Xs) € or(AO(P,p, X,Da)) genérate a distinct 
predicate with ñame pred¡v — pred((a(í), Ac, A5)). 



• Each predicate predN is defined by 

- predN(t) :- fail if As = _L 

— (predjv(íi) : _ &í)$i :: . . . :: (predjv(íra)
 : _ b'n)9n provided that 

def(p) — p(ti) : - &i : : . . . : : p(tn) : - &n otherwise 

• Let chüdren(N) = (Idi,unifi) : : . . . : : (Idí,unifi) : : . . . : : {Idn,unifn) 
Let chüdren({Idi,unifí)) = <a¿i(í¿i), A?l5 AfL) : : . . . : : {aiki(tiki), \¡k., Affcj). 

• Each body 6¿ is defined as 

- 6í = /oii if Affc¿ = J_ 

- &¿ - (preda ( tu) , . . . ,prediki (tiki)) 

where predij = pred ((atj (í ¿¿), \¡j, \%j)) otherwise 

• Each substitution di is defined as 

— di = e if b'i = fail 
— di = 8n ... 9iki provided that 

9ij G part-conc(\¡j) j — 1 . . . fc¿ otherwise 

Note that in Algorithm 1 atoms are specialized w.r.t. answers rather than calis as in traditional 
partial evaluation. This cannot be done for example if the program contains calis to extra-logical 
predicates such as v a r / 1 . Other more conservative algorithms can be used for such cases and for 
programs with side-effects. Using Algorithm 1 it is sometimes possible to detect infinite failures 
of predicates and replace predicate definitions and/or clause bodies by f a i l , which is not possible 
in partial evaluation. Additionally, as mentioned above, dead-code, i.e., clauses not used to solve 
the considered goal are removed. 

Theorem 3.1 Let AO(P,p,X,Da) be an analysis and-or graph for a definite program P and an 
atomic goal«— p with the abstract cali substitution A £ Da. Let P' be the program obtained from 
AO(P,p, X,Da) by Algorithm 1. Then V6»c s.t. 6C E 7(A) 

i) pOc succeeds in P' with computed answer 0S iff pOc succeeds in P with computed answer 0S. 

ii) if p9c finitely fails in P then p9c finitely fails in P'. 

Thus, both computed answers and finite failures are preserved. However, the specialized pro­
gram may fail finitely while the original one loops (see Example 4.2). 

4 And-Or Graphs Vs. SLD Trees 

It is known [LS96] that the propagation of success information during partial evaluation is not 
optimal compared to that potentially achievable by abstract interpretation. 

Example 4.1 Consider the program and goal of Example 2.1. The program obtained by applying 
Algorithm 1 to the and-or graph in Figure 1 is: 

p ( a ) : - q ( a ) , r ( a ) . 
q ( a ) . 
r ( a ) . 

Note that Algorithml may perform some degree of specialization even if no unfolding is per-
formed. The information in AO(P,p,X,Da) allows determining that the cali to r(X) will be 
performed with X=a and thus the second clause for r can be eliminated. Such information can 
only be propagated in partial evaluation by unfolding the atom q(X). D 
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Figure 2: Recursive And-or analysis graph 

Example 4.2 Consider again the goal and program of Example 2.1 to which a new clause 
q (X) : - q(X). is added for predicate q. The and-or graph for the new program is depicted in 
Figure 2. The program generated for this graph by Algorithm 1 is the following: 

p ( a ) : - q ( a ) , r ( a ) . 
q ( a ) . 
q ( a ) : - q ( a ) . 
r ( a ) . 

The fact that r (X) will only be called with X=a cannot be determined by any finite unfolding rule. 
Note that the original program loops for the goal «— p (b) while the specialized one fails finitely. 
D 

The two examples above show that and-or graphs allow a level of success information propaga-
tion not possible in traditional partial evaluation, either because the unfolding rule is not aggressive 
enough (Example 4.1) or because the required unfolding would be infinite (Example 4.2). This 
suggests the possible interest of integrating full partial evaluation in an analysis/specialization 
framework based on abstract interpretation. 

In addition, the fact that such a framework can work uniformly with abstract or concrete sub-
stitutions makes it more general than partial evaluation and may allow performing optimizations 
not possible in the traditional approaches to partial evaluation. For example, based on this idea, 
in [GH91, PH95, PH97], a framework for "abstract partial evaluation" was presented in which 
abstract substitutions were used to perform program optimizations. These optimizations used 
the notion of "abstract executability," which allows reducing calis to some (built-in) predicates at 
compile-time to the valúes true or false, or to a set of unifications. An additional pragmatic moti-
vation for this work is the availability of off-the-shelf generic abstract interpretation engines such 
as PLAI [MH92] or GAIA [CV94] which greatly facilítate the efficient implementation of analyses. 
The existence of such an abstract interpreter in advanced optimizing compilers is very likely, and 
using the analyzer itself to perform partial evaluation can result in a great simplification of the 
architecture of the compiler [GH91, PH95]. 

5 Partial Evaluation using And—Or Graphs 

We have established so far that for any abstract interpretation in the PLAI system (even inter-
pretations over very simple domains such as modes) we can get some corresponding specialized 
source program with possibly múltiple versions by applying Algorithm 1. Correctness of abstract 
interpretation ensures that the set of triples computed by analysis must cover all calis performed 
during execution of any instance of the given initial goal (p, A). This condition is closely related 
to the closedness condition of partial evaluation [LS91]. Furthermore there are well-understood 
conditions and methods for ensuring termination of an abstract interpretation. 



Thus, an important conceptual advantage of formalizing partial evaluation in terms of ab-
stract interpretation is that two of the main concerns of partial evaluation algorithms - namely 
correctness and termination - are guaranteed by the general principies of abstract interpretation. 
The other important concern is the degree of specialization that is achieved, which is determined 
in partial evaluation by the local and global control. We now examine how these control issues 
appear in the setting of abstract interpretation. 

5.1 Global Control in Abstract Interpretation 

Effectiveness of specialization greatly depends on the set of atoms A = {Ai,..., An} for which 
a specialized versión is to be generated. In partial evaluation, this mainly depends on the global 
control used. If we use the specialization framework based on abstract interpretation, the number 
of specialized versions depends on the number of or-nodes in the analysis graph. Assuming that 
the level of multivariance of analysis is fixed (multivariant on calis but not on successes) this is 
controlled by the choice of abstract domain and widening operators (if any). The finer-grained the 
abstract domain is, the larger the set A will be. In conclusión, the role of so-called global control in 
partial evaluation is played in abstract interpretation by our particular choice of abstract domain 
and widening operators (which are strictly required when the abstract domain is infinite). 

The specialization framework we propose is very general. Depending on the kind of optimiza-
tions we are interested in performing, different domains should be used and thus different sets A 
will be obtained. For example, if we are interested in eliminating redundant groundness tests, our 
abstract domain could in principie collapse the two atoms p(l) and p(2) into one p(ground) as 
from the point of view of the optimization, whether p is called with the valué 1 or 2 is not relevant. 

While the main aim of global control is to ensure termination and not to genérate too many 
superfluous versions, it may often be the case that global control (or the domain) does not collapse 
two versions in the hope that they will lead to different optimizations. If this is not the case, a min-
imizing step may be performed a posteriori on the and-or graph in order to produce a minimal 
number of versions while maintaining all optimizations. This was proposed in [Win92], imple-
mented in [PH95] and also discussed in [LM95]. We intend to extend the minimizing algorithm in 
[PH95] for the case of optimizations based on unfolding. 

5.2 Local Control in Abstract Interpretation 

Local control in partial evaluation determines how each atom in A should be unfolded. However, 
in traditional frameworks for abstract interpretation we usually have a choice for abstract domain 
and widening operators, but no choice for local control is offered. This is because by default, in 
abstract interpretation each or-node is related by just one (abstract) unfolding step to its children. 
This corresponds to a trivial local control (unfolding rule) in partial evaluation. 

Several possibilities exist in order to overeóme the simplicity of the local control performed by 
abstract interpretation: 

1. According to many authors, [Gal93, LM96] global control is much harder than local control. 
Thus, subsequent unfolding of the specialized program generated by Algorithm 1 can be 
done using traditional unfolding rules to eliminate determínate calis or some non-recursive 
calis, for example. The and-or analysis graph may be of much help in order to detect such 
cases. 

2. Use abstract domains which allow propagating enough information about the success of an 
or-node so as to perform useful specialization on other or-nodes (for example by allowing 
sets of abstract substitutions). The advantage of this method is that no modification of the 
abstract interpretation framework is required. Also, as we will see in Example 5.1, it may 
allow specializations which are not possible by the methods proposed below.3 

Unless multivariance on successes is performed by the analysis framework. 



3. Another possibility is a simple modification to the algorithm for abstract interpretation in 
order to accommodate an unfolding rule. In fact, unfolding can be formalized as a transfor-
mation in an and-or graph. In this approach, if the unfolding rule decides that an or-node 
should not be unfolded, then it is treated as in the usual case. If the rule decides that the 
atom should be further unfolded, the atom would be analyzed but the corresponding or-
node would not be added to the and-or graph. Then, some amount of transformation which 
is equivalent to the unfolding step should be performed in the analysis graph, and analy-
sis would continué with the usual algorithm. This approach would allow introducing the 
full power of partial evaluation into our framework by a simple modification of the analysis 
algorithm. The drawback is the need for the unfolding rule. 

4. The last possibility is related to the first alternative in that analysis is performed first with 
a trivial unfolding rule and once analysis has finished, further unfolding may be performed if 
desired. However, rather than performing unfolding without modifying the analysis graph as 
in the first approach, whenever an additional unfolding step is performed, the analysis graph 
is modified accordingly, using the same graph transformation rules mentioned in the previous 
approach. However, the difference with the previous approach is that there, unfolding is 
completely integrated in abstract interpretation and the local control decisions are taken 
when performing analysis. The advantages over the previous approach are that there is 
no need to modify the analysis algorithm and that unfolding is performed once the whole 
analysis graph has been computed. The benefits of the availability of such better information 
for local control still have to be explored. The disadvantage is that in order to achieve as 
accurate information as in the previous approach it may be required to perform reanalysis 
in order to propágate the improved information introduced due to the additional unfolding 
steps, with the associated computational cost. This cost could remain reasonable by the use 
of incremental analysis techniques such as those presented in [HPMS95]. 

Example 5.1 Consider the following program and the goal «—r(X) 

r(X) : -
q ( a ) . 
q ( f ( X ) ) 
p ( a ) . 
p ( f ( X ) ) 
p (g (X) ) 

q(X) ,p(X) 

: - q (X) . 

: - p (X) . 
: - p (X) . 

The third clause for p can be eliminated in the specialized program for «— r(X), provided that the 
cali substitution for p(X) contains the information that X=a or X=f (Y). The abstract domain has 
to be precise enough to capture, in this case, the set of principal functors of the answers. 

Note that no partial evaluation algorithm based on unfolding will be able to eliminate the 
third clause for p, since an atom of form p (X) will be produced, no matter what local and global 
control is used4. Thus, simulating unfolding in abstract interpretation (such as methods 1, 3, and 
4 above do) will not achieve this specialization either. An approach such as 2 is required. • 

5.3 Abstract Domains and Widenings for Partial Evaluation 

Once we have presented the relation between abstract domains and widening with global control 
in partial evaluation, we will discuss desired features for performing partial evaluation. Ideally, 
we would like that 

• The domain can simúlate the effect of unfolding, which is the means by which bindings are 
propagated in partial evaluation. Our abstract domain has to be capable of tracking such 
bindings. This suggests that domains based on term structure are required. 

4Conjunctive partial deduction [LSdW96] can solve this problem in a completely different way. 



• In addition, the domain needs to distinguish, in a single abstract substitution, several bind-
ings resulting from different branches of computation in order to achieve the approach 2 for 
local control. A term domain whose least upper bound is based on the msg, for instance, 
will rapidly lose information about múltiple answers since all substitutions are combined into 
one binding. 

Two classes of domain which have the above desirable features are: 

• The domain of type-graphs [BJ92], [GdW94], [HCC94]. Its drawback is that inter-argument 
dependencies are lost. 

• The domain of sets of depth-A; substitutions with set unión as the least upper bound operator. 
However uniform depth bounds are usually either too imprecise (if k is too small) or genérate 
much redundancy if larger valúes of k are chosen. 

One way to eliminate the depth-bound k in the abstract domain it to depend on a suitable 
widening operator which will guarantee that the set of or-nodes remains finite. Many techniques 
have been developed for global control of partial evaluation. Such techniques make use of data 
structures which are very related to the and-or graph such as characteristic trees [GB91], [Leu95] 
(related to neighbourhoods [Tur88]), trace-terms [GL96], and global trees [MG95], and combina-
tions of them [LM96]. Thus, it seems possible to adapt these techniques to the case of abstract 
interpretation and formalize them as widening operators. 

6 Future Work 

It remains as future work to experiment with the techniques presented in this paper. We plan to 
do so in the context of the PLAI system. Different abstract domains and widening operators for 
global control should be implemented and experimented with. Efficiency of the approach as well 
as quality of the specialized programs should be compared to that of existing partial evaluators. 
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