
Towards Integrating Partial Evaluation
in a Specialization Pramework based
on Generic Abstract Interpretation

Germán Puebla* John Gallagher^ Manuel Hermenegildo*

(Extended Abstract)

1 Introduction
Partial evaluation [JGS93, DGT96] specializes programs for known valúes of the input. Partial
evaluation of logic programs has received considerable attention [Neu90, LS91, Sah93, Gal93,
Leu97] and several algorithms parameterized by different control strategies have been proposed
which produce useful partial evaluations of programs. Regarding the correctness of such transfor-
mations, two conditions, defined on the set of atoms to be partially evaluated, have been identiñed
which which ensure correctness of the transformation: "closedness" and "independence" [LS91].

From a practical point of view, effectiveness, that is, finding suitable control strategies which
provide an appropriate level of specialization while ensuring termination, is a crucial problem which
has also received considerable attention. Much work has been devoted to the study of such control
strategies in the context of "on-line" partial evaluation of logic programs [MG95, LD97, LM96].
Usually, control is divided into components: "local control," which controls the unfolding for a
given atom, and "global control," which ensures that the set of atoms for which a partial evaluation
is to be computed remains finite.

In most of the practical program specialization algorithms, the above mentioned control strate­
gies use, to a greater or lesser degree, information generated by static program analysis. One of
the most widely used techniques for static analysis is abstract interpretation [CC77, CC92]. Some
of the relations between abstract interpretation and partial evaluation have been identiñed before
[GCS88, GH91, Gal92, CK93, PH95, LS96]. However, the role of analysis is so fundamental that it
can be asked whether partial evaluation could be achieved directly by a generic abstract interpre­
tation system such as [Bru91, MH92, CV94]. With this question in mind, we present a method for
generating a specialized program directly from the output (an and-or graph) of a generic abstract
interpreter, in particular the PLAI system [MH89, MH90, MH92]. We then explore two main
questions which arise. Firstly, how much specialization can be performed by an abstract inter­
preter, compared to partial evaluation? Secondly, how do the traditional problems of local and
global control appear when placed in the setting of generic abstract interpretation? We conclude
that although further study is needed, there seem to be some practical and conceptual advantages
in using an abstract interpreter to perform program specialization.

2 Abstract Interpretation

Abstract interpretation [CC77] is a technique for static analysis in which execution of the program
is simulated on an abstract domain (Da) which is simpler than the actual, concrete domain (D).

*Department of Computer Science, Technical University of Madrid, {german,herme}@f i.upm.es
TDepartment of Computer Science, University of Bristol, john@compsci.bristol .ac.uk

1

http://upm.es
mailto:john@compsci.bristol.ac.uk

{} {A/a}

P(A)

{A=X}

» ^íC*X/a> {X/aT^ {X/a}

q (x) r(X)
{X=a} ¿K {X=a}

{X/a} I {X/a} {X/a} {X/a}

Figure 1: And-or analysis graph

Abstract valúes and sets of concrete valúes are related via a pair of monotonic mappings {a,-y):
abstraction a : D >->• Da, and concretization 7 : Da >->• D.

Goal dependent abstract interpretation takes as input a program P, a predicate symbol1 p
(denoting the exported predicate), and, optionally, a restriction of the run-time bindings of p
expressed as an abstract substitution A. Such an abstract interpretation computes a set of triples
Analysis(P,p,X,Da) = {(pi, \{,\{),..., (pn,K,K)} such that V« = l..n V9C e 7(A?) ií Pi9c

succeeds in P with computed answer 9S then 9S £ 7(Af). Additionally, Vp¿#¿ that occurs in the
concrete computation of p9 s.t 9 £ 7(A) where p is the exported predicate and A the description
of the initial calis of p 3(pj,AJ,AJ) £ Analysis(P,p, A, Da) s.t. p¿ = p¿ and 9 £ 7(A|). This
condition is related to the closedness condition usually required in partial evaluation. In abstract
interpretation, _L denotes the abstract substitution such that 7(-L) — 0. A tupie (p¿,A|,-L) indi-
cates that all calis to predicate pj with substitution 9 £ 7(A|) either fail or loop, i.e., they do not
produce any success substitutions. An analysis is said to be multivariant on calis if more than
one triple {p, AJ, X{),..., {p, AJj, A^) n > 0 with A¿ ^ Aj for some i,j may be computed for the
same predicate.2 If analysis is multivariant on successes, the triples in Analysis(P,p, A, Da) will
be of the form (p¿, A¿, Sf) where S- = {Xft,..., Af.} with j > 0. Different analyses may be defined
with different levéis of multivariance [VDCM93]. However, unless the analysis is multivariant on
calis, little specialization may be expected in general. Due to space limitations we will limit the
discussion to analyses (such as the original analysis algorithm in PLAI) which are multivariant on
calis but not on successes, though multivariant successes can also be captured by certain abstract
domains, as will be discussed in Section 5. In our case, in order to compute Analysis(P,p, A, Da),
an and-or graph is constructed which encodes dependencies among the different triples. Note that
when several success substitutions have been computed for the same or-node, the different substi­
tutions have to be summarized in a more general one (possibly losing accuracy) before propagating
this success information. This is done by means of the least upper bound (lub) operator. Finiteness
of the and-or graph (and thus termination of analysis) is achieved by considering abstract domains
with certain characteristics (such as being finite, or of finite height, or without infinite ascending
chains) or by the use of a widening operator [CC77].

Example 2.1 Consider the simple example program below taken from [Leu97]. Figure 1 depicts
a possible result of analysis for the goal p(A) with A unrestricted using the concrete domain as
abstract domain.

p (X) : - q(X), r (X) .
q (a) .
r (a) .
r (b) .

1Extending the framework to sets of predicate symbols is trivial.
2If n = 0 then the corresponding predicate is not needed for solving any goal in the considered class (p, A) and

is thus dead-code and may be eliminated.

We do not describe here how to build analysis and-or graphs. Details can be found in [Bru91,
MH90, MH92]. The graph has two sorts of nodes: those which correspond to atoms (called or-
nodes) and those which correspond to clauses (called and-nodes). Or-nodes are triples (p¿, A¿, Af).
For clarity, in the figures the atom is superscripted with Ac to the left and As to the right of
the atom respectively. For example, the or-node (p(A), {}, {A/a}) is depicted in the figure as
í}p(A)íA/a\ And-nodes are pairs (Id, Subs) where Id is a unique identifier for the node and
Subs represents the head unifications of the clause the node refers to. In the figures, they are
represented as triangles and the head unifications are depicted to their right. Finally, squares are
used to represent the empty (true) atom. Or-nodes have ares to and-nodes which represent the
clauses with which the atom (possibly) unifies. Clearly, if an or-node has no children, the atom
will fail. And-nodes have ares to or-nodes for the corresponding predicate p and cali pattern Ac.
If a node (p, Ac, _) is already in the tree it becomes a recursive cali and As is obtained by means
of a fixpoint computation. •

3 Code Generation from an And—Or Graph

After introducing some notation we present an algorithm which generates a logic program from
an analysis and-or graph. This idea was already exploited in [Win92, PH95]. A program P is a
sequence of clauses of the form H : - B where H is an atom and i? is a possibly empty conjunction
of atoms. The sequence of clauses in a program which define a predicate p is denoted by def(p).
We denote by or(AO) the set of or-nodes in an and-or graph AO. Given a node N, children(N)
is the sequence of nodes Ni :: . . . :: Nn n > 0 such that there is an are from N to N' in AO
iff N' = N for some i and Vi,j = 0 , . . . ,n N is to the left of Nó in AO iff i < j . Note that
children(N) may be applied both to or- and and-nodes. We assume the existence of an injective
function pred which given AO(P,p,X,Da) returns a unique predicate ñame for each or-node in
the graph and pred((p(í), A, As)) = p iff {p(t),X, Xs) is a root node in the graph (to ensure that
top-level - exported - predicate ñames are maintained).

Definition 1 (partial concretization) Given an abstract substitution A, a substitution 9 is a
partial concretization of A and is denoted 9 £ part-conc(X) iff W € 7(A) 39" s.t. 9' = 99".

part-conc(X) can be regarded as containing (part of) the definite information about concrete
bindings that the abstract substitution A captures. Note that different partial concretizations of
an abstract substitution A with different aecuracy may be considered. For example if the abstract
domain is a depth-k abstraction and A = {X/f(f(Y))orX/f(a)}, a most aecurate part-Conc(X) is
{X/f(Z)}. Note also that VA e € part-Cont(X) where e is the empty substitution.

Basically, the algorithm for code generation (Algorithm 1) given below creates a different
versión for each different (abstract) cali substitution Ac to the predicate p in the original program.
This is easily done by associating a versión to each or-node. Note that if we always take the trivial
substitution e as part-canc(X) for any A (such as in [PH95]) then such versions are identical except
that atoms in clause bodies are renamed to always cali the appropriate versión. The interest in
doing the proposed múltiple specialization is that the new program may be subject to further
optimizations which were not possible in the original program. Additionally, in Algorithm 1
predicates whose success substitution is _L are directly defined as p(t) : —fail, as it is known that
they produce no answers. Even if the success substitution for the predicate (or-node) is not _L,
individual clauses for p whose success substitution is _L (useless clauses) are removed from the
final program.

Algorithm 1 (Code Generation) Given an analysis and-or graph AO(P,p, X,Da) generated
by analysis for a program P and an atomic goal «— p with abstract substitution A £ Da do:

• For each non-empty or-node N = {a(t),Xc,Xs) € or(AO(P,p, X,Da)) genérate a distinct
predicate with ñame pred¡v — pred((a(í), Ac, A5)).

• Each predicate predN is defined by

- predN(t) :- fail if As = _L

— (predjv(íi) : _ &í)$i :: . . . :: (predjv(íra)
 : _ b'n)9n provided that

def(p) — p(ti) : - &i : : . . . : : p(tn) : - &n otherwise

• Let chüdren(N) = (Idi,unifi) : : . . . : : (Idí,unifi) : : . . . : : {Idn,unifn)
Let chüdren({Idi,unifí)) = <a¿i(í¿i), A?l5 AfL) : : . . . : : {aiki(tiki), \¡k., Affcj).

• Each body 6¿ is defined as

- 6í = /oii if Affc¿ = J_

- &¿ - (preda (tu) , . . . ,prediki (tiki))

where predij = pred ((atj (í ¿¿), \¡j, \%j)) otherwise

• Each substitution di is defined as

— di = e if b'i = fail
— di = 8n ... 9iki provided that

9ij G part-conc(\¡j) j — 1 . . . fc¿ otherwise

Note that in Algorithm 1 atoms are specialized w.r.t. answers rather than calis as in traditional
partial evaluation. This cannot be done for example if the program contains calis to extra-logical
predicates such as v a r / 1 . Other more conservative algorithms can be used for such cases and for
programs with side-effects. Using Algorithm 1 it is sometimes possible to detect infinite failures
of predicates and replace predicate definitions and/or clause bodies by f a i l , which is not possible
in partial evaluation. Additionally, as mentioned above, dead-code, i.e., clauses not used to solve
the considered goal are removed.

Theorem 3.1 Let AO(P,p,X,Da) be an analysis and-or graph for a definite program P and an
atomic goal«— p with the abstract cali substitution A £ Da. Let P' be the program obtained from
AO(P,p, X,Da) by Algorithm 1. Then V6»c s.t. 6C E 7(A)

i) pOc succeeds in P' with computed answer 0S iff pOc succeeds in P with computed answer 0S.

ii) if p9c finitely fails in P then p9c finitely fails in P'.

Thus, both computed answers and finite failures are preserved. However, the specialized pro­
gram may fail finitely while the original one loops (see Example 4.2).

4 And-Or Graphs Vs. SLD Trees

It is known [LS96] that the propagation of success information during partial evaluation is not
optimal compared to that potentially achievable by abstract interpretation.

Example 4.1 Consider the program and goal of Example 2.1. The program obtained by applying
Algorithm 1 to the and-or graph in Figure 1 is:

p (a) : - q (a) , r (a) .
q (a) .
r (a) .

Note that Algorithml may perform some degree of specialization even if no unfolding is per-
formed. The information in AO(P,p,X,Da) allows determining that the cali to r(X) will be
performed with X=a and thus the second clause for r can be eliminated. Such information can
only be propagated in partial evaluation by unfolding the atom q(X). D

{ } , A X { A / a }

P(A)

{X=a}

{X/a} I {X/a}

Figure 2: Recursive And-or analysis graph

Example 4.2 Consider again the goal and program of Example 2.1 to which a new clause
q (X) : - q(X). is added for predicate q. The and-or graph for the new program is depicted in
Figure 2. The program generated for this graph by Algorithm 1 is the following:

p (a) : - q (a) , r (a) .
q (a) .
q (a) : - q (a) .
r (a) .

The fact that r (X) will only be called with X=a cannot be determined by any finite unfolding rule.
Note that the original program loops for the goal «— p (b) while the specialized one fails finitely.
D

The two examples above show that and-or graphs allow a level of success information propaga-
tion not possible in traditional partial evaluation, either because the unfolding rule is not aggressive
enough (Example 4.1) or because the required unfolding would be infinite (Example 4.2). This
suggests the possible interest of integrating full partial evaluation in an analysis/specialization
framework based on abstract interpretation.

In addition, the fact that such a framework can work uniformly with abstract or concrete sub-
stitutions makes it more general than partial evaluation and may allow performing optimizations
not possible in the traditional approaches to partial evaluation. For example, based on this idea,
in [GH91, PH95, PH97], a framework for "abstract partial evaluation" was presented in which
abstract substitutions were used to perform program optimizations. These optimizations used
the notion of "abstract executability," which allows reducing calis to some (built-in) predicates at
compile-time to the valúes true or false, or to a set of unifications. An additional pragmatic moti-
vation for this work is the availability of off-the-shelf generic abstract interpretation engines such
as PLAI [MH92] or GAIA [CV94] which greatly facilítate the efficient implementation of analyses.
The existence of such an abstract interpreter in advanced optimizing compilers is very likely, and
using the analyzer itself to perform partial evaluation can result in a great simplification of the
architecture of the compiler [GH91, PH95].

5 Partial Evaluation using And—Or Graphs

We have established so far that for any abstract interpretation in the PLAI system (even inter-
pretations over very simple domains such as modes) we can get some corresponding specialized
source program with possibly múltiple versions by applying Algorithm 1. Correctness of abstract
interpretation ensures that the set of triples computed by analysis must cover all calis performed
during execution of any instance of the given initial goal (p, A). This condition is closely related
to the closedness condition of partial evaluation [LS91]. Furthermore there are well-understood
conditions and methods for ensuring termination of an abstract interpretation.

Thus, an important conceptual advantage of formalizing partial evaluation in terms of ab-
stract interpretation is that two of the main concerns of partial evaluation algorithms - namely
correctness and termination - are guaranteed by the general principies of abstract interpretation.
The other important concern is the degree of specialization that is achieved, which is determined
in partial evaluation by the local and global control. We now examine how these control issues
appear in the setting of abstract interpretation.

5.1 Global Control in Abstract Interpretation

Effectiveness of specialization greatly depends on the set of atoms A = {Ai,..., An} for which
a specialized versión is to be generated. In partial evaluation, this mainly depends on the global
control used. If we use the specialization framework based on abstract interpretation, the number
of specialized versions depends on the number of or-nodes in the analysis graph. Assuming that
the level of multivariance of analysis is fixed (multivariant on calis but not on successes) this is
controlled by the choice of abstract domain and widening operators (if any). The finer-grained the
abstract domain is, the larger the set A will be. In conclusión, the role of so-called global control in
partial evaluation is played in abstract interpretation by our particular choice of abstract domain
and widening operators (which are strictly required when the abstract domain is infinite).

The specialization framework we propose is very general. Depending on the kind of optimiza-
tions we are interested in performing, different domains should be used and thus different sets A
will be obtained. For example, if we are interested in eliminating redundant groundness tests, our
abstract domain could in principie collapse the two atoms p(l) and p(2) into one p(ground) as
from the point of view of the optimization, whether p is called with the valué 1 or 2 is not relevant.

While the main aim of global control is to ensure termination and not to genérate too many
superfluous versions, it may often be the case that global control (or the domain) does not collapse
two versions in the hope that they will lead to different optimizations. If this is not the case, a min-
imizing step may be performed a posteriori on the and-or graph in order to produce a minimal
number of versions while maintaining all optimizations. This was proposed in [Win92], imple-
mented in [PH95] and also discussed in [LM95]. We intend to extend the minimizing algorithm in
[PH95] for the case of optimizations based on unfolding.

5.2 Local Control in Abstract Interpretation

Local control in partial evaluation determines how each atom in A should be unfolded. However,
in traditional frameworks for abstract interpretation we usually have a choice for abstract domain
and widening operators, but no choice for local control is offered. This is because by default, in
abstract interpretation each or-node is related by just one (abstract) unfolding step to its children.
This corresponds to a trivial local control (unfolding rule) in partial evaluation.

Several possibilities exist in order to overeóme the simplicity of the local control performed by
abstract interpretation:

1. According to many authors, [Gal93, LM96] global control is much harder than local control.
Thus, subsequent unfolding of the specialized program generated by Algorithm 1 can be
done using traditional unfolding rules to eliminate determínate calis or some non-recursive
calis, for example. The and-or analysis graph may be of much help in order to detect such
cases.

2. Use abstract domains which allow propagating enough information about the success of an
or-node so as to perform useful specialization on other or-nodes (for example by allowing
sets of abstract substitutions). The advantage of this method is that no modification of the
abstract interpretation framework is required. Also, as we will see in Example 5.1, it may
allow specializations which are not possible by the methods proposed below.3

Unless multivariance on successes is performed by the analysis framework.

3. Another possibility is a simple modification to the algorithm for abstract interpretation in
order to accommodate an unfolding rule. In fact, unfolding can be formalized as a transfor-
mation in an and-or graph. In this approach, if the unfolding rule decides that an or-node
should not be unfolded, then it is treated as in the usual case. If the rule decides that the
atom should be further unfolded, the atom would be analyzed but the corresponding or-
node would not be added to the and-or graph. Then, some amount of transformation which
is equivalent to the unfolding step should be performed in the analysis graph, and analy-
sis would continué with the usual algorithm. This approach would allow introducing the
full power of partial evaluation into our framework by a simple modification of the analysis
algorithm. The drawback is the need for the unfolding rule.

4. The last possibility is related to the first alternative in that analysis is performed first with
a trivial unfolding rule and once analysis has finished, further unfolding may be performed if
desired. However, rather than performing unfolding without modifying the analysis graph as
in the first approach, whenever an additional unfolding step is performed, the analysis graph
is modified accordingly, using the same graph transformation rules mentioned in the previous
approach. However, the difference with the previous approach is that there, unfolding is
completely integrated in abstract interpretation and the local control decisions are taken
when performing analysis. The advantages over the previous approach are that there is
no need to modify the analysis algorithm and that unfolding is performed once the whole
analysis graph has been computed. The benefits of the availability of such better information
for local control still have to be explored. The disadvantage is that in order to achieve as
accurate information as in the previous approach it may be required to perform reanalysis
in order to propágate the improved information introduced due to the additional unfolding
steps, with the associated computational cost. This cost could remain reasonable by the use
of incremental analysis techniques such as those presented in [HPMS95].

Example 5.1 Consider the following program and the goal «—r(X)

r(X) : -
q (a) .
q (f (X))
p (a) .
p (f (X))
p (g (X))

q(X) ,p(X)

: - q (X) .

: - p (X) .
: - p (X) .

The third clause for p can be eliminated in the specialized program for «— r(X), provided that the
cali substitution for p(X) contains the information that X=a or X=f (Y). The abstract domain has
to be precise enough to capture, in this case, the set of principal functors of the answers.

Note that no partial evaluation algorithm based on unfolding will be able to eliminate the
third clause for p, since an atom of form p (X) will be produced, no matter what local and global
control is used4. Thus, simulating unfolding in abstract interpretation (such as methods 1, 3, and
4 above do) will not achieve this specialization either. An approach such as 2 is required. •

5.3 Abstract Domains and Widenings for Partial Evaluation

Once we have presented the relation between abstract domains and widening with global control
in partial evaluation, we will discuss desired features for performing partial evaluation. Ideally,
we would like that

• The domain can simúlate the effect of unfolding, which is the means by which bindings are
propagated in partial evaluation. Our abstract domain has to be capable of tracking such
bindings. This suggests that domains based on term structure are required.

4Conjunctive partial deduction [LSdW96] can solve this problem in a completely different way.

• In addition, the domain needs to distinguish, in a single abstract substitution, several bind-
ings resulting from different branches of computation in order to achieve the approach 2 for
local control. A term domain whose least upper bound is based on the msg, for instance,
will rapidly lose information about múltiple answers since all substitutions are combined into
one binding.

Two classes of domain which have the above desirable features are:

• The domain of type-graphs [BJ92], [GdW94], [HCC94]. Its drawback is that inter-argument
dependencies are lost.

• The domain of sets of depth-A; substitutions with set unión as the least upper bound operator.
However uniform depth bounds are usually either too imprecise (if k is too small) or genérate
much redundancy if larger valúes of k are chosen.

One way to eliminate the depth-bound k in the abstract domain it to depend on a suitable
widening operator which will guarantee that the set of or-nodes remains finite. Many techniques
have been developed for global control of partial evaluation. Such techniques make use of data
structures which are very related to the and-or graph such as characteristic trees [GB91], [Leu95]
(related to neighbourhoods [Tur88]), trace-terms [GL96], and global trees [MG95], and combina-
tions of them [LM96]. Thus, it seems possible to adapt these techniques to the case of abstract
interpretation and formalize them as widening operators.

6 Future Work

It remains as future work to experiment with the techniques presented in this paper. We plan to
do so in the context of the PLAI system. Different abstract domains and widening operators for
global control should be implemented and experimented with. Efficiency of the approach as well
as quality of the specialized programs should be compared to that of existing partial evaluators.

References
[BJ92] M. Bruynooghe and G. Janssens. Deriving descriptions of possible valúes of pro-

gram variables by means of abstract interpretation. Journal of Logic Programming,
13(2&3):205-258, 1992.

[Bru91] M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic
Programs. Journal of Logic Programming, 10:91-124, 1991.

[CC77] P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In Fourth ACM
Symposium on Principies of Programming Languages, pages 238-252, 1977.

[CC92] P. Cousot and R. Cousot. Abstract Interpretation and Application to Logic Programs.
Journal of Logic Programming, 13(2 and 3):103-179, July 1992.

[CK93] C. Consel and S.C. Koo. Parameterized partial deduction. ACM Transactions on
Programming Languages and Systems, 15(3):463-493, July 1993.

[CV94] B. Le Charlier and P. Van Hentenryck. Experimental Evaluation of a Generic Abstract
Interpretation Algorithm for Prolog. ACM Transactions on Programming Languages
and Systems, 16(1):35-101, 1994.

[DGT96] 0 . Danvy, R. Glück, and P. Thiemann, editors. Partial Evaluation. Number 1110 in
LNCS. Springer, February 1996. Dagstuhl Seminar.

[Gal92] J.P. Gallagher. Static Analysis for Logic Program Specialization. In Workshop on
Static Analysis WSA'92, pages 285-294, 1992.

[Gal93] J.P. Gallagher. Tutorial on specialisation of logic programs. In Proceedings of
PEPM'93, the ACM Sigplan Symposium on Partial Evaluation and Semantics-Based
Program Manipulation, pages 88-98. ACM Press, 1993.

[GB91] J. Gallagher and M. Bruynooghe. The derivation of an algorithm for program special­
isation. New Generation Computing, 9(1991) :305-333, 1991.

[GCS88] J. Gallagher, M. Codish, and E.Y. Shapiro. Specialisation of Prolog and FCP programs
using abstract interpretation. New Generation Computing, 6:159-186, 1988.

[GdW94] J. Gallagher and D.A. de Waal. Fast and precise regular approximation of logic
programs. In P. Van Hentenryck, editor, Proceedings of the International Conference
on Logic Programming (ICLP'94), Santa Margherita Ligure, Italy. MIT Press, 1994.

[GH91] F. Giannotti and M. Hermenegildo. A Technique for Recursive Invariance Detection
and Selective Program Specialization. In Proc. 3rd. Int'l Symposium on Programming
Language Implementation and Logic Programming, number 528 in LNCS, pages 323-
335. Springer-Verlag, August 1991.

[GL96] J. Gallagher and L. Lafave. Regular approximation of computation paths in logic
and functional languages. In O. Danvy, R. Glück, and P. Thiemann, editors, Partial
Evaluation, volume 1110, pages 115 - 136. Springer Verlag Lecture Notes in Computer
Science, 1996.

[HCC94] P. Van Hentenryck, A. Cortesi, and B. Le Charlier. Type analysis of prolog using type
graphs. Journal of Logic Programming, 22(3):179 - 210, 1994.

[HPMS95] M. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey. Incremental Analysis of
Logic Programs. In International Conference on Logic Programming, pages 797-811.
MIT Press, June 1995.

N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program
Generation. Prenctice Hall, New York, 1993.

M. Leuschel and D. De Schreye. Constrained partial deduction and the preservation
of characteristic trees. Technical Report CW 250, Departement Computerwetenschap-
pen, K.U. Leuven, Belgium, June 1997. Accepted for Publication in New Generation
Computing.

M. Leuschel. Ecological partial deduction: Preserving characteristic trees without
constraints. In M. Proietti, editor, Proceedings of the 5th International Workshop on
Logic Program Synthesis and Transformation. Springer-Verlag, 1995.

Michael Leuschel. Advanced Techniques for Logic Program Specialisation. PhD thesis,
K.U. Leuven, May 1997.

M. Leuschel and B. Martens. Global control for partial deduction through characteris­
tic atoms and global trees. Technical Report CW 220, Departement Computerweten-
schappen, K.U. Leuven, Belgium, December 1995.

[JGS93]

[LD97]

[Leu95]

[Leu97]

[LM95]

[LM96] M. Leuschel and B. Martens. Global control for partial deduction through character-
istic atoras and global trees. In Olivier Danvy, Robert Glück, and Peter Thiemann,
editors, Proceedings of the 1996 Dagstuhl Seminar on Partial Evaluation, LNCS 1110,
pages 263-283, Schlofi Dagstuhl, 1996.

[LS91] J.W. Lloyd and J.C. Shepherdson. Partial Evaluation in Logic Programming. Journal
of Logic Programming, 11(3-4) :217-242, 1991.

[LS96] Michael Leuschel and De Schreye. Logic program specialisation: How to be more spe-
ciñc. In H. Kuchen and S.D. Swierstra, editors, Proceedings ofthe International Sympo-
sium on Programming Languages, Implementations, Logics and Programs (PLILP'96),
LNCS 1140, pages 137-151, Aachen, Germany, September 1996.

[LSdW96] M. Leuschel, D. De Schreye, and D. A. de Waal. A conceptual embedding of folding into
partial deduction: towards a maximal integration. In M. Maher, editor, Proceedings
of the Joint Int,. Conf. and Symp. on Logic Programming (JICSLP'96). MIT Press,
1996.

[MG95] B. Martens and J. Gallagher. Ensuring global terniination of partial deduction while
allowing fl exible polyvariance. In L. Sterling, editor, Proceedings ICLP'95, pages
597-611, Shonan Village Center, Japan, June 1995. MIT Press.

[MH89] K. Muthukumar and M. Hermenegildo. Determination of Variable Dependence Infor­
mation at Compile-Time Through Abstract Interpretation. In 1989 North American
Conference on Logic Programming, pages 166-189. MIT Press, October 1989.

[MH90] K. Muthukumar and M. Hermenegildo. Deriving A Fixpoint Computation Algorithm
for Top-down Abstract Interpretation of Logic Programs. Technical Report ACT-DC-
153-90, Microelectronics and Computer Technology Corporation (MCC), Austin, TX
78759, April 1990.

[MH92] K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable Depen-
dency Using Abstract Interpretation. Journal of Logic Programming, 13(2/3):315-347,
July 1992. Originally published as Technical Report FIM 59.1/IA/90, Computer Sci­
ence Dept, Universidad Politécnica de Madrid, Spain, August 1990.

[Neu90] G. Neumann. Transforming interpreters into compilers by goal classification. In
M. Bruynooghe, editor, Proceedings of the Second Workshop on Meta-programming
in Logic, pages 205-217, Leuven, Belgium, 1990. K. U. Leuven.

[PH95] G. Puebla and M. Hermenegildo. Implementation of Múltiple Specialization in Logic
Programs. In Proc. ACM SIGPLAN Symposium on Partial Evaluation and Semantics
Based Program Manipulation, pages 77-87. ACM Press, June 1995.

[PH97] G. Puebla and M. Hermenegildo. Abstract Specialization and its Application to Pro­
gram Parallelization. In J. Gallagher, editor, VI International Workshop on Logic Pro­
gram Synthesis and Transformation, number 1207 in LNCS, pages 169-186. Springer-
Verlag, 1997.

[Sah93] D. Sahlin. Mixtus: An automatic partial evaluator for full Prolog. New Generation
Computing, 12(1):7-51, 1993.

[Tur88] V. Turchin. The algorithm of generalization in the supercompiler. In D. Bj0rner,
A.P. Ershov, and N.D. Jones, editors, Proc. of the IFIP TC2 Workshop on Partial
Evaluation and Mixed Computation, pages 531-549. North-Holland, 1988.

[VDCM93] P. Van Hentenryck, O. Degimbe, B. Le Charlier, and L. Michael. The Impact of
Granularity in Abstract Interpretation of Prolog. In Workshop on Static Analysis,
number 724 in LNCS, pages 1-14. Springer-Verlag, September 1993.

[Win92] W. Winsborough. Múltiple Specialization using Minimal-Function Graph Semantics.
Journal of Logic Programming, 13(2 and 3):259-290, July 1992.

