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Abstract 

Information generated by abstract interpreters has long been 
used to perform program specialization. Additionally, if the 
abstract interpreter generates a multivariant analysis, it is 
also possible to perform múltiple specialization. Informa­
tion about valúes of variables is propagated by simulating 
program execution and performing fixpoint computations 
for recursive calis. In contrast, traditional partial evalua-
tors (mainly) use unfolding for both propagating valúes of 
variables and transforming the program. It is known that 
abstract interpretation is a better technique for propagat­
ing success valúes than unfolding. However, the program 
transformations induced by unfolding may lead to impor-
tant optimizations which are not directly achievable in the 
existing frameworks for múltiple specialization based on ab­
stract interpretation. The aim of this work is to devise a 
specialization framework which integrates the better infor-
mation propagation of abstract interpretation with the pow-
erful program transformations performed by partial evalua­
tion, and which can be implemented via small modifications 
to existing generic abstract interpreters. With this aim, we 
will relate top-down abstract interpretation with traditional 
concepts in partial evaluation and sketch how the sophisti-
cated techniques developed for controlling partial evaluation 
can be adapted to the proposed specialization framework. 
We conclude that there can be both practical and concep­
tual advantages in the proposed integration of partial eval­
uation and abstract interpretation. 

Keywords : Logic Programming, Abstract Interpretation, 
Partial Evaluation, Program Specialization. 

1 Introduction 

Partial evaluation [JGS93, DGT96] specializes programs for 
known valúes of the input. Partial evaluation of logic 
programs has received considerable attention [Neu90, LS91, 
Sah93, Gal93, Leu97] and several algorithms parameterized 
by different control strategies have been proposed which pro­
duce useful partial evaluations of programs. Regarding the 
correctness of such transformations, two conditions, defined 
on the set of atoms to be partially evaluated, have been 
identified which ensure correctness of the transformation: 
"closedness" and "independence" [LS91]. 

Prom a practical point of view, effectiveness, that is, find-
ing suitable control strategies which provide an appropriate 
level of specialization while ensuring termination, is a cru-
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cial problem which has also received considerable attention. 
Much work has been devoted to the study of such control 
strategies in the context of "on-line" partial evaluation of 
logic programs [MG95, LD97, LM96]. Usually, control is di-
vided into components: "local control," which controls the 
unfolding for a given atom, and "global control," which en-
sures that the set of atoms for which a partial evaluation is 
to be computed remains finite. 

In most of the practical algorithms for program spe­
cialization, the above mentioned control strategies use, to 
a greater or lesser degree, information generated by static 
program analysis. One of the most widely used techniques 
for static analysis is abstract interpretation [CC77, CC92]. 
Some of the relations between abstract interpretation and 
partial evaluation have been identified before [GCS88, GH91, 
Gal92, CK93, PH95, LS96, PH97, Jon97, PGH97, Leu98]. 
However, the role of analysis is so fundamental that it is nat­
ural to consider whether partial evaluation could be achieved 
directly by a generic, top-down abstract interpretation sys-
tem such as [Bru91, MH92, CV94]. With this question in 
mind, we present a method for generating a specialized pro­
gram directly from the output (an and-or graph) of such a 
generic, top-down abstract interpreter. We then explore two 
main questions which arise. First, how much specialization 
can be performed by an abstract interpreter, compared to 
on-line partial evaluation? Second, how do the traditional 
problems of local and global control appear when placed in 
the setting of generic abstract interpretation? We conclude 
that there seem to be practical and conceptual advantages 
in using an abstract interpreter to perform program special­
ization. 

2 Abstract Interpretation 

Abstract interpretation [CC77] is a technique for static pro­
gram analysis in which execution of the program is simulated 
on an abstract domain (Da) which is simpler than the actual, 
concrete domain (D). Abstract valúes and sets of concrete 
valúes are related via a pair of monotonic mappings (a,j): 
abstraction a : D —> Da, and concretization 7 : Da —y D. 

We recall some classical definitions in logic programming. 
An atom has the form p(ti, ...,t„) where p is a predicate 
symbol and the í¿ are terms. We often use t to denote a tupie 
of terms. A clause is of the form H: - S i , . . . , Bn where H, 
the head, is an atom and Bi,..., Bn, the body, is a possibly 
empty finite conjunction of atoms. A definite logic program, 
or program, is a finite sequence of clauses. 

Goal dependent abstract interpretation takes as input a 
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program P, a predícate symbol1 p (denoting the exported 
predícate), and, optionally, a restriction of the run-time 
bindings of p expressed as an abstract substitution A in the 
abstract domain Da. Such an abstract interpretation com­
putes a set of triples Analysis(P,p,\,Da) = {(pi,Ai,Af), 
. . . , {pn, Xñ, \n)}- I n each triple (p¿, Af, Af}, p¿ is an atom 
and Af and Af are, respectively, the abstract cali and success 
substitutions. Correctness of abstract interpretation guar-
antees: 

• The abstract success substitutions cover all the con­
crete success substitutions which appear during exe-
cution, i.e., Vi = l..n \/8c € 7(Af) if pi6c succeeds in P 
with computed answer ds then 6S € 7(Af). 

• The abstract cali substitutions cover all the concrete 
calis which appear during execution. Ve that oceurs in 
the concrete computation of p6 s.t. 9 E 7(A) where p 
is the exported predícate and A the description of the 
initial calis of p 3{pj, AJ, A }̂ e Analysis(P,p,\,Da) 
s.t. c = pjd' and 8' € 7(AJ). This property is related 
to the closedness condition [LS91] required in partial 
deduction. 

As usual in abstract interpretation, _L denotes the abstract 
substitution such that 7(-L) = 0. A tupie (p.,, AJ, _L) in-
dicates that all calis to predícate pj with substitution 6 e 
7(AJ) either fail or loop, i.e., they do not produce any success 
substitutions. 

An analysis is said to be multivariant on calis if more 
than one triple (p, A ,̂ Af), . . . , (p, A", A* ) n > 0 with Af ^ AJ 
for some i,j may be computed for the same predícate. Note 
that if n = 0 then the corresponding predícate is not needed 
for solving any goal in the considered class (p, A) and is 
thus dead code and may be eliminated. An analysis is 
said to be multivariant on successes if more than one triple 
(p, Ac, Af}, • • • ,{p, Ac, A^} n > 0 with Af ^ Aj for some i, j 
may be computed for the same predícate p and cali sub­
stitution Ac. Different analyses may be defined with differ-
ent levéis of multivariance [VDCM93]. However, unless the 
analysis is multivariant on calis, little specialization may be 
expected in general. Many implementations of abstract in-
terpreters are multivariant on calis. However, most of them 
(such as PLAI [MH89, MH90, MH92]) are not multivariant 
on successes, mainly for efRciency reasons. As a result, and 
as we are interested in reusing existing abstract interpreters 
for performing partial evaluation, we will limit in principie 
our discussion to analyses which are multivariant on calis 
but not on successes. Note that this is not a strong re­
striction for our purposes as traditional partial evaluation 
is not multivariant on successes either. Also, code gener-
ation from an analysis which is multivariant on successes 
is not straightforward. However, multivariant successes can 
in fact be captured by certain abstract domains even if the 
analysis is not multivariant on successes, as will be discussed 
in Section 5. Note that for analyses not multivariant on suc­
cesses when (p, Ac, Af} , . . . , (p, Ac, \s

n) with n > 1 have been 
computed for the same predícate p and cali substitution Ac, 
the different substitutions {Af,..., A^} have to be summa-
rized in a more general one (possibly losing aecuracy) As 

before propagating this success information. This is done 
by means of the least upper bound (lub) operator.2 

P(A) 

1Extending the framework to sets of predícate symbols is trivial. 
! D „ is a poset. 

« ^ í x íX/a> íX/a> íX/a> 
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Figure 1: And-or analysis graph 

In our case, in order to compute Analysis(P,p,\, Da), 
an and-or graph AO(P,p, A, Da) is constructed which en-
codes dependencies among the different triples. Such and-or 
graph can be viewed as a finite representation of the (possi­
bly infinite) set of and-or trees explored by the (possibly in­
finite) concrete execution [Bru91]. Finiteness of the and-or 
graph (and thus termination of analysis) is achieved by con-
sidering abstract domains with certain characteristics (such 
as being finite, or of finite height, or without infinite ascend-
ing chains) or by the use of a widening operator [CC77]. If 
it is clear in the context, we will often write AO instead of 
AO(P,p, A, Da) for short. 

E x a m p l e 2.1 Consider the simple example program be-
low taken from [Leu97]. 

p(X):-
q ( a ) . 
r ( a ) . 
r ( b ) . 

q(X), r (X) . 

We take as initial (exported predícate) the goal p(A) with A 
unrestricted using the concrete domain as abstract domain. 
In this case, Analysis(P,p(A), {}, D) = {{p(A), {}, {A/a}), 
(q(X), {}, {X/a}), (r(X), {X/a}, {X/a})} and Figure 1 de-
piets a possible and-or analysis graph. D 

Due to space limitations, and given that it is now well 
understood, we do not describe in detail here how to build 
analysis and-or graphs. More details can be found in [Bru91, 
MH90, MH92, HPMS95, PH96]. The graph has two sorts of 
nodes: those which correspond to atoms (called or-nodes) 
and those which correspond to clauses (called and-nodes). 
Or-nodes are triples (p¿,Af,Af). As before, Af and Af are, 
respectively, a pair of abstract cali and success substitutions 
for the atom p¿. For clarity, in the figures the atom p¿ is 
superscripted with Ac to the left and As to the right of p¿ 
respectively. For example, the or-node (p(A),{}, {A/a}) is 
depicted in the figure as ^'p(AyA'a'. And-nodes are pairs 
{Id, H) where Id is a unique identifier for the node and H 
is the head of the clause the node refers to. In the figures, 
they are represented as triangles and H is depicted to the 
right of the triangles. Note that the substitutions (atoms) 
labeling and-nodes are concrete whereas the substitutions 
labeling or-nodes are abstract. Finally, squares are used 
to represent the empty (true) atom. Or-nodes have ares 



Algoríthm 2.2 [Code Generation] Given Analysis(P,p, A, Da) and AO(P,p, A, Da) generated by analysis 
for a program P and an atomic goal «— p with abstract substitution A £ Da, and a partial concretization 
function partjsonc do: 

• For each tupie TV = (a(í),Ac,As) € Analysis(P,p,\,Da) genérate a distinct predícate with ñame 
predjv = name((a(I), Ac, As}). 

Each predícate predjy is defined by 

— predi? (t) : - fail 

— (predjv(ti) : - &i)0i : : . . . : : (predjv(íK) •- b'n)8n 

where expansion(N, AO) = ON and 
chüdren{ON, AO) = (7di,pi(ti)) : : . . . : : {i"d¿,p¿(í¿)} 

Each body 6'¡ is defined as 

— b'i = fail 

:: (Id„,p(t„)) 

- b'i = (predíi( t i i ) , . . . ,prediki(tiki)) 
where predij = name({aij(Uj), X¡j, Xfj)), and 
chüdren{(Idi,p{ti)),AO) = <a¿i(*¿i), Xc

a, X
s
a) :: ... :: {aiki(tiki), \c

ik., \¡k.). 

Each substitution 8i is defined as 

8i = mgu^stdipartjson^Xfn)),..., std(partjsonc(\ik.))) 

if As = _l_ 

otherwise 

otherwise 

if b'i = fail 

otherwise 

Figure 2: Algorithm for Code Generation 

to and-nodes which represent the clauses with which the 
atom (possibly) unifies. And-nodes have ares to or-nodes 
which represent the atoms in the body of the clause. Note 
that several instances of the same clause may exist in the 
analysis graph of a program. In order to avoid confliets 
with variable ñames, clauses are standardized apart before 
adding to the analysis graph the nodes which correspond 
to such clause. This way, only nodes which belong to the 
same clause may share variables. As the head of the clause 
(after the standardizing renaming transformation) is stored 
in the and-node, we can always reconstruct (a variant of) 
the original clause when generating code from an and-or 
graph (see Section 3 below). 

Intuitively, analysis algorithms are just graph traversal 
algorithms which given P, p, A, and Da build AO(P,p, A, Da) 
by adding the required nodes and computing success sub-
stitutions until a global fixpoint is reached. For a given 
P, p, A, and Da there may be many different analysis graphs. 
However, there is a unique least analysis graph which gives 
the most precise information possible. This analysis graph 
corresponds to the least fixpoint of the abstract semantic 
equations. Each time the analysis algorithm creates a new 
or-node for p and Ac and before computing the correspond-
ing As, it checks whether Analysis(P,p, A, Da) already con-
tains a tupie for (a variant of) p and Ac. If that is the 
case, the or-node is not expanded and the already computed 
As stored in Analysis(P,p, A, Da) is used for that or-node. 
This is done both for efficieney and for avoiding infinite 
loops when analyzing recursive predicates. As a result, sev­
eral instances of the same or-node may appear in AO, but 
only one of them is expanded. We denote by expansion(N) 
the instance of the or-node N which is expanded. If there 
is no tupie for p and Ac in Analysis(P,p,\,Da), the or-
node is expanded, Xs computed, and (p, AC,AS) added to 
Analysis(P,p,\,Da). Note that the success substitutions 

As stored in Analysis(P,p, A, Da) are tentative and may be 
updated during analysis. Only when a global fixpoint is 
reached the success substitutions are safe approximations of 
the concrete success substitutions. 

3 Code Generation from an And-Or Graph 

The information in Analysis(P,p, A, Da) has long been used 
for program optimization. Múltiple specialization is a pro­
gram transformation technique which allows generating sev­
eral versions p i , . . . ,pn n > 1 for a predícate p in P. Then, 
we have to decide which of p i , . . . ,pn is appropriate for each 
cali to p. One possibility is to use run-time tests to de­
cide which versión to use. If analysis is multivariant on 
calis but not on successes, another possibility, as done in 
[Win92, PH95], is to genérate code from AO(P,p, A, Da) in-
stead of Analysis(P,p, A, Da). The ares in AO(P,p, A, Da) 
allow determining which p¿ to use at each cali. Then, each 
versión of a predícate receives a unique ñame and calis are 
renamed appropriately. 

After introducing some notation, an algorithm which 
generates a logic program from an analysis and-or graph 
is presented in Figure 2 (Algorithm 2.2). Given a non-
root node N, we denote by parent(N, AO) the node M £ 
AO such that there is an are from M to N in AO, and 
children(N, AO) is the sequence of nodes JVi : : . . . : : Nn n > 
0 such that there is an are from N to N' in AO iff N' = N{ 

for some i and Vi, j = 0 , . . . , n iV» is to the left of N¡ in AO 
iff i < j . Note that children(N, AO) may be applied both to 
or- and and-nodes. We assume the existence of an injective 
function ñame which given Analysis(P,p, A, Da) returns a 
unique predícate ñame for each tupie and name({g(í), Ac, As)) 
q iff g(í) = p (the exported predícate) and Ac = A (the re-
striction on initial goals), to ensure that top-level - exported 



- predícate ñames are preserved. 

Deñnítion 3.1 [partial concretization] A function 
part-conc : Da —> D is a pariial concretization ifF VA E 
Da W € 7(A) 30" s.t. 8' = partjsonc(\)8". 
partjconc{\) can be regarded as containing (part of) the def-
inite information about concrete bindings that the abstract 
substitution A captures. Note that different partial con-
cretizations of an abstract substitution A with different accu-
racy may be considered. For example if the abstract domain 
is a depth-k abstraction and A = {X/f(f(Y))orX/f(a)}, a 
most accurate partuconc(X) is {X/f(Z)}. Note also that 
part_conc(\) = e where e is the empty substitution, is a 
trivially correct partial concretization of any A. 

Deñnítion 3.2 [specialization] Let P be a defmite pro-
gram. Let AO(P,p, A, Da) be an and-or graph. We say that 
a program P' is a specialization of P w.r.t. AO(P,p, \,Da) 
and part-conc and we denote it P' = spec(AO(P,p, X,Da), 
part-conc) iff P' can be obtained by applying Algorithm 2.2 
to AO(P,p, A, Da) using part-conc. 

Basically, Algorithm 2.2 for code generation creates a dif­
ferent versión for each different (abstract) cali substitution 
Ac to each predicate p¿ in the original program. This is easily 
done by associating a versión to each or-node. Note that if 
we always take the trivial substitution e as partjconc(X) for 
any A (such as in [PH95]) then such versions are identical ex-
cept that atoms in clause bodies are renamed to always cali 
the appropriate versión.3 The interest in performing the 
proposed múltiple specialization is that the new program 
may be subject to further optimizations, such as elimina-
tion of redundant type/mode checks, which are allowed in 
the multiply specialized program because now each versión 
it to be used for a more restricted set of input valúes than in 
the original program. Additionally, in Algorithm 2.2 predi-
cates whose success substitution is _L are directly defined as 
p(t) : — fail, as it is known that they produce no answers. 
Even if the success substitution As for (p, Ac, As) is not _L, 
individual clauses for p whose success substitution is _L (use-
less clauses) for the considered Ac are removed from the final 
program. 

By mgu we denote, as usual, the most general unifier 
of substitutions. std represents the result of standardizing 
apart the results of part-conc in order to avoid undesired 
variable ñame clashes. Note that in Algorithm 2.2 atoms are 
specialized w.r.t. answers rather than calis, as is the case in 
traditional partial evaluation. This will in general provide 
further specialized (and optimized) programs as in general 
the success substitution (which describes answers) computed 
by abstract interpretation is more informative (restricted) 
than the cali substitution. However, this cannot be done for 
example if the program contains calis to extra-logical pred-
icates such as va r /1 . Other more conservative algorithms 
can be used for such cases and for programs with side-effects. 
Using Algorithm 2.2 it is sometimes possible to detect infi­
nite failures of predicates and replace predicate definitions 
and/or clause bodies by f a i l , which is not possible in par­
tial evaluation, as the number of unfolding steps must be 
finite. Additionally, as mentioned above, dead code, i.e., 
clauses not used to solve the considered goal, are removed. 

Note that Algorithm 2.2 is an improvement over the 
code-generation phase of [PH95, PH97] in that it allows 
applying non-trivial partial concretizations of the abstract 

The program obtained in this way is programo in the notation 
of [PH95]. 

P(A) 

{ } 

{X/a} ""- {X/a} 

r(X) 

{} \ {Y/a} ,' « 

q(Y) —' 

r(a) 

{ } 

Figure 3: And-or analysis graph for a recursive program 

(success) substitutions. The program obtained by Algo­
rithm 2.2 can then be further optimized by applying the 
notion of abstract executability as presented in [PH97], which 
reduces an atom w.r.t. an abstract substitution. 

T h e o r e m 3.3 Let AO(P, p, A, Da) be an analysis and-or 
graph for a defmite program P and an atomic goal <— p 
with the abstract cali substitution A € Da. Let P' be the 
program obtained from AO(P,p, A, Da) by Algorithm 2.2. 
Then V6>c s.t. 8C e 7(A) 

i) p6c succeeds in P' with computed answer 8S iff p8c 

succeeds in P with computed answer 8S. 

ii) if p8c finitely fails in P then p8c finitely fails in P'. 

Thus, both computed answers and finite failures are pre­
served. However, the specialized program may fail finitely 
while the original one loops (see Example 4.2). 

4 And-Or Graphs Vs. SLD Trees 

It is known [LS96] that the propagation of success informa­
tion during partial evaluation is not optimal compared to 
that potentially achievable by abstract interpretation. 

Example 4.1 Consider the program of Example 2.1. The 
program obtained by applying Algorithm 2.2 to the and-or 
graph in Figure 1 is: 

p(a) : - q(a) , 
q ( a ) . 
r ( a ) . 

r ( a ) . 

Note that Algorithm 2.2 may perform some degree of 
specialization even if no unfolding is performed. The infor­
mation in AO(P,p, A, Da) allows determining that the cali 
to r(X) will be performed with X=a and thus the second 
clause for r can be eliminated. Such information can only 
be propagated in partial evaluation by unfolding the atom 
q(X). D 

Example 4.2 Consider again the goal and program of Ex­
ample 2.1 to which a new clause q(X) : - q(X) . is added for 



predícate q. The and-or graph for the new program is de-
picted in Figure 3. The dotted are indicates that the cor-
responding or-nodes have equivalent abstract cali substitu-
tion. However, the set of tupies in Analysis(P' ,p(A), {}, D) 
for the current program P' is exactly the same as in Exam-
ple 2.1, in spite of the more involved and-or graph in this 
example. The program generated for this graph by Algo-
rithm 2.2 is the following: 

p(a) : - q(a) , r ( a ) . 
q ( a ) . 
q(a) : - q(a) . 
r ( a ) . 

The fact that r(X) will only be called with X=a cannot be 
determined by any finite unfolding rule. Note that the origi­
nal program loops for the goal «— p(b) while the specialized 
one fails finitely. ü 

The two examples above show that and-or graphs allow 
a level of success information propagation not possible in 
traditional partial evaluation, either because the unfolding 
rule is not aggressive enough (Example 4.1) or because the 
required unfolding would be infinite (Example 4.2). This ob-
servation already provides motivation for studying the inte-
gration of full partial evaluation in an analysis/specialization 
framework based on abstract interpretation. 

In addition, the fact that such a framework can work 
uniformly with abstract or concrete substitutions makes it 
more general than partial evaluation and may allow perform-
ing optimizations not possible in the traditional approaches 
to partial evaluation. An additional pragmatic motivation 
for this work is the availability of off-the-shelf generic ab­
stract interpretation engines such as PLAI [MH92] or GAIA 
[CV94] which greatly facilitate the efficient implementation 
of analyses. The existence of such an abstract interpreter in 
advanced optimizing compilers is likely, and using the ana-
lyzer itself to perform partial evaluation can result in a great 
simplification of the architecture of the compiler. 

5 Partial Evaluation using And-Or Graphs 

We have established so far that for a given abstract inter­
pretation of a program in a system such as PLAI (even in-
terpretations over very simple domains such as modes) we 
can get some corresponding specialized source program with 
possibly múltiple versions by applying Algorithm 2.2. Cor-
reetness of abstract interpretation ensures that the set of 
triples computed by analysis must cover all calis performed 
during execution of any instance of the given initial goal 
(p, A). This condition is strongly related to the closedness 
condition of partial evaluation [LS91]. Furthermore there 
are well-understood conditions and methods for ensuring 
termination of an abstract interpretation. 

Thus, an important conceptual advantage of formaliz-
ing partial evaluation in terms of abstract interpretation is 
that two of the main concerns of partial evaluation algo-
rithms - namely, correetness and termination - are treated 
in a very general and flexible way by the general principies, 
methods, and formal results of abstract interpretation. The 
other important concern is the degree of specialization that 
is achieved, which is determined in partial evaluation by the 
local and global control. We now examine how these control 
issues appear in the setting of abstract interpretation. 

5.1 Global Control in Abstract Interpreta­
tion 

Effectiveness of program specialization greatly depends on 
the set of atoms A = {Ai,..., An} for which (specialized) 
code is to be generated. In partial evaluation, this mainly 
depends on the global control used. If we use the specializa­
tion framework based on abstract interpretation, the num­
ber of specialized versions depends on the number of or-
nodes in the analysis graph. This is controlled by the choice 
of abstract domain and widening operators (if any). The 
finer-grained the abstract domain is, the larger the set A 
will be. In conclusión, the role of so-called global control 
in partial evaluation is played in abstract interpretation by 
our particular choice of abstract domain and widening op­
erators (which are strictly required for ensuring termination 
when the abstract domain contains ascending chains which 
are infinite - as is the case for the concrete domain). 

Note that the specialization framework we propose is 
very general. Depending on the kind of optimizations we are 
interested in performing, different domains (and widening 
operators) should be used and thus different A sets would 
be obtained. For example, if we are interested in eliminat-
ing redundant groundness tests, our abstract domain could 
in principie collapse the two atoms p(l) and p(2) into one 
p(ground) since, from the point of view of the optimization, 
whether p is called with the valué 1 or 2 is not relevant. 

While the main aim of global control is to ensure termi­
nation and to avoid generating too many superfluous ver­
sions, it may often be the case that global control (or the 
domain) does not collapse two versions in the hope that 
they will lead to different optimizations. If this is not the 
case, a minimizing step may be performed a posteriori on 
the and-or graph in order to produce a minimal number of 
versions while maintaining all optimizations. This was pro-
posed in [Win92], implemented in [PH95] and also discussed 
in [LM95]. We intend to extend the minimizing algorithm 
in [PH95] for the case of optimizations based on unfolding. 

5.2 Local Control in Abstract Interpreta­
tion 

Local control in partial evaluation determines how each atom 
in A should be unfolded. However, in traditional frame-
works for abstract interpretation we usually have a choice 
for abstract domain and widening operators, but no choice 
for local control is offered. This is because by default, in 
abstract interpretation each or-node is related by just one 
(abstract) unfolding step to its children. This corresponds to 
a trivial local control (unfolding rule) in partial evaluation. 

Unfolding is a well known program transformation tech-
nique in which an atom in the body of a clause, which can be 
seen as a cali to a procedure, is replaced by the code of such 
procedure. We now introduce the notion of node-unfolding 
which is a graph transformation technique which given an 
and-or graph AO and an or-node N in AO builds a new 
and-or graph AO'. Such graph transformation mimics the 
effect of unfolding an atom in a program. 

Definition 5.1 [clause-unfolding] 
Let A = (Id,H) be an and-or node in AO(P,p, A, Da) 

s.t. children(A, AO) = L\ : : . . . : : N :: . . . L m with va > 1 
and N = (a, Ac, As). Let also C = Hc : - B i , . . . , B„ be a 
clause in program P whose head He unifies with atom a. 



P(A) 

A O 

{}P(A)» 
{ } / - A 4 > P(A) 
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Figure 4: Example Node Unfoldings 

The clause-unfolding of A and N w.r.t. C, denoted 
cLunf(A,N,C), is the (partial) and-or graph AO' with 
root A' = {Id, H8) such that 8 is a mgu of a and He and 
children(A', AO') = L\ : : . . . : : iVi :: . . . Nn :: ... L'm. 

Each or-node Nj is of the form (BJ,\CJ,\J), where 
AJ and Aj have to be computed by the analysis algo-
rithm as usual. Provided that L¡ = (p¿,A¿,A¿) then, 
Ui = (pi8,Aadd(8,Xc

i),Aadd(8,X¡)) where Aadd(8,\) up-
dates the abstract substitution A by conjoining it with the 
concrete substitution 8 (see for example [HPMS95]). A dis-
cussion on the effeets of performing such conjoining (aecu-
racy vs. efficieney) can be found in Section 5.3. 

As usual, mgu denotes a most general unifier, in this case 
of two atoms. Clause-unfolding mimics the effect of an SLD 
resolution step. 

Deñnítion 5.2 [node-unfolding] 
Let N = (a, \c, As) be a non-empty or-node in AO. Let 

Ci : : . . . : : Cn n > 1 be the sequence of standardized apart 
clauses in program P s.t. a unifies with the head of C¿. Let 
parent(N,AO) = A, and let parent(A,AO) = GP with 
chüdren(GP, AO) = Pi :: . . . :: A :: . . . P¿, i > 1. 

The node-unfolding of AO w.r.t. N, denoted node-
unfolding(AO, N) is the and-or graph AO' obtained from 
AO by making children(GP,AO') be Pi :: . . . :: 
cLunf(A, N,Ci) :: ... :: cLunf(A, N,Cn) •••••• Pi and elim-
inating nodes A and TV. 

Node unfolding is achieved by performing clause-
unfolding with all clauses in the program whose head unifies 
with the unfolded atom. 

Theorem 5.3 [node-unfolding] Let AO(P,p, A, Da) be a 
(partially computed) and-or graph. Let part-conc be a par­
tial concretization function, let PAO = spec(AO(P,p, A, Da), 

partjconc). Let N be an or-node in AO, let AO' = node-
unfolding(AO,N), and let P' = spec(AO',part.conc). Then 
\/8c s.t. 8C 6 7(A) 

i) p8c succeeds in P' with computed answer 8S iff p8c 

succeeds in PAO with computed answer 8S. 

ii) if p8c fmitely fails in PAO then p8c finitely fails in P'. 

Theorem 5.3 guarantees correetness of node-unfolfing as 
it states that performing node-unfolding on an and-or graph 
preserves computed answers and finite failures. 

Example 5.4 Reconsider the program of Example 2.1 in 
which an additional clause q(b) . has been added to predi-
cate q. The new analysis graph generated without perform­
ing any node-unfolding is shown in Figure 4 as AO, using 
the concrete domain as abstract domain and the most spe-
cific generalization (msg) as lub operator for summarizing 
different success substitutions into one. As discussed in Sec­
tion 5.5 below, the msg is a rather crude lub operator. 
However, we use it for the sake of clarity of the example. 
AO' is an analysis graph for the same program but this time 
the or-node {q(X), {}, {}} has been unfolded. Finally, graph 
AO" in the figure is the result of applying node-unfolding 
twice to AO', once w.r.t. (p{a), {}, {}) and another one w.r.t 
(j)(b), {}, {}}. The code generated by spec(AO",partjzon¿) 
(for any partjsonc) is the program: 
p ( a ) . 
p (b ) . 

5.3 Strategies for Local Control 
Several possibilities exist in order to overeóme the simplicity 
of the local control performed by abstract interpretation: 



1. According to many authors, [Gal93, LM96] global con­
trol is much harder than local control. Thus, one pos-
sibility is to obtain AO using the traditional analysis 
algorithm. Subsequent unfolding spec(AO, partjconc) 
can be done using traditional unfolding rules in order 
to elimínate determínate calis or some non-recursive 
calis, for example. The and-or analysis graph AO may 
be of much help in order to detect such cases. 

2. A second alternative it to use abstract domains for 
analysis which allow propagating enough information 
about the success of an or-node so as to perform use-
ful specialization on other or-nodes. This requires that 
the Ivb operator not lose "much" information, for ex­
ample by allowing sets of abstract substitutions. The 
advantage of this method is that no modification of the 
abstract interpretation framework is required. Also, as 
we will see in Example 5.5, it may allow specializations 
which are not possible by the methods proposed below 
(ñor by traditional partial evaluation). 

3. Another possibility is a simple modification to the al­
gorithm for abstract interpretation in order to accom-
modate a node-unfolding rule. In this approach, if the 
node-unfolding rule decides that an or-node N in a, 
graph AO should not be unfolded, then TV is treated 
as in the traditional abstract interpretation algorithm. 
If the rule decides that N should be unfolded, AO' = 
node-unfolding(AO, N) is computed and analysis con­
tinúes for the new graph AO'. Note that in order to 
unfold N it is not required to know its success substi­
tution. Thus, the graph transformation associated to 
an unfolding is merely structural and can be performed 
before or after computing the and-or graph below N. 
If decisions on unfolding are taken before computing 
the nodes below N, the unfolding rule corresponds to 
those used in partial evaluation: only the history of 
nodes higher in the top-down algorithm is available 
for deciding whether to unfold or not. However, we 
can delay this decisión until the graph below N has 
been computed. This allows making better decisions 
as also the specialization history of atoms lower in the 
hierarchy is known. 

In the latter case, if N is not the leftmost atom in its 
clause and the abstract domain is downwards closed, 
there is a choice of whether to apply the (sequence 
of) success substitution (s) for N to the sibling nodes 
L\ :: . . . :: L\,_ to the left of N (i.e., to perform left 
propagation) and reanalyze such nodes with the bet­
ter information or not. Both alternatives are correct. 
The second alternative may allow better analysis and 
specialization, but at a higher computational cost. 

4. The last possibility we propose is to first compute AO 
with a trivial unfolding rule (i.e., using the traditional 
abstract interpretation algorithm). Once analysis has 
finished, further unfolding may be performed if de-
sired, as done in the first alternative proposed. How­
ever, unlike the first approach, rather than performing 
unfolding externally to the analysis and without mod-
ifying the analysis graph, whenever an unfolding step 
is performed for a node N in AO, a new analysis graph 
AO' = node-unfolding(AO, N) is computed. 

This approach can be seen as an extreme case of de-
laying node-unfolding, not only until the graph be­

low N has been computed (as mentioned in the third 
approach) but rather until a global fixpoint has been 
reached for the whole analysis graph. The difference 
with the third approach is that there, unfolding is com-
pletely integrated in abstract interpretation and the lo­
cal control decisions are taken when performing analy­
sis and as mentioned before, the only issue is whether 
to perform left propagation of bindings or not. The 
advantage over the previous approach is that unfold­
ing is performed once the whole analysis graph has 
been computed. The benefits of the availability of such 
better information for local control still have to be ex-
plored. The disadvantage is that in order to achieve as 
accurate information as possible it may be required to 
perform reanalysis in order to propágate the improved 
information introduced due to the additional unfolding 
steps, i.e., using {piO, Aadd(8, A£), Aadd(0, Af)} instead 
of (J>Í, Af, Af) for the nodes to the right of the unfolded 
node, with the associated computational cost. This 
cost could however be kept quite reasonable by the 
use of incremental analysis techniques such as those 
presentedin [HPMS95, PH96]. 

E x a m p l e 5.5 Consider the following program and the goal 
<-r(X) 

r(X) : - q(X),p(X). 
q ( a ) . 
q(f(X)) : - q(X). 
p ( a ) . 
p(f(X)) : - p(X). 
p(g(X)) : - p(X). 

The third clause for p can be eliminated in the specialized 
program for <— r(X), provided that the cali substitution for 
p(X) (i.e., the success substitution for q(X)) contains the 
information that X=a or X=f (Y). The abstract domain has 
to be precise enough to capture, in this case, at least the set 
of principal functors of the answers. 

Note that no partial evaluation algorithm based on un­
folding will be able to eliminate the third clause for p, since 
an atom of form p (X) will be produced, no matter what local 
and global control is used.4 Thus, simulating unfolding in 
abstract interpretation (such as methods 1, 3, and 4 above 
do) will not achieve this specialization either. An approach 
such as 2 is required. ü 

5.4 Abstract Domains and Widenings for 
Partial Evaluation 

Once we have presented the relation between abstract do­
mains and widening with global control in partial evaluation, 
in this section we discuss desired features for performing par­
tial evaluation. Ideally, we would like that 

• The domain can simúlate the effect of unfolding, which 
is the means by which bindings are propagated in par­
tial evaluation. Our abstract domain has to be capable 
of tracking such bindings. This suggests that domains 
based on term structure are required. 

• In addition, the domain needs to distinguish, in a 
single abstract substitution, several bindings result-
ing from different branches of computation in order 

4Conjunctive partial deduction [LSdW96] can solve this problem 
in a completely different way. 



to achieve the approach 2 for local control. A term 
domain whose least upper bound is based on the msg 
(most specific generalization), for instance, will rapidly 
lose information about múltiple answers since all sub-
stitutions are combined into one binding. 

Two examples of classes of domain which have the above 
desirable features are: 

• The domain of type-graphs [BJ92], [GdW94], [HCC94]. 
Its drawback is that inter-argument dependencies are 
lost. 

• The domain of sets of depth-fc substitutions with set 
unión as the least upper bound operator. However uni-
form depth bounds are usually either too imprecise (if 
k is too small) or genérate much redundancy if larger 
valúes of k are chosen. 

One way to elimínate the depth-bound k in the abstract 
domain it to depend on a suitable widening operator which 
will guarantee that the set of or-nodes remains finite. Many 
techniques have been developed for global control of partial 
evaluation. Such techniques make use of data structures 
which are very related to the and-or analysis graph such 
as characteristic trees [GB91], [Leu95] (related to neighbor-
hoods [Tur88]), trace-terms [GL96], and global trees [MG95], 
and combinations of them [LM96]. Thus, it seems possible 
to adapt these techniques to the case of abstract interpreta-
tion and formalize them as widening operators. 

6 Related Work 

The integration of partial evaluation and abstract interpre-
tation has been attempted before, both from a partial eval­
uation and abstract interpretation perspective. In [GCS88, 
Gal92] such an integration is attempted from the point of 
view of partial evaluation. However, the approach is only 
partially successful as the resulting specialization framework 
does not exploit the full power of abstract interpretation. 
Another attempt for functional rather than logic programs 
is presented in [CK93]. 

From an abstract interpretation perspective, the integra­
tion has also received considerable attention. In [GH91], ab­
stract interpretation is used to perform múltiple specializa­
tion in an ad-hoc way. Also in [GH91] the notion of abstract 
executability is presented (and later formalized in [PH97]) 
and applied to remove redundant builtin checks. The first 
complete framework for múltiple specialization based on ab­
stract interpretation is presented in [Win92]. The first im-
plementation and experimental evaluation is presented in 
[PH95] together with a framework based on existing ab­
stract interpreters. All these techniques, even though they 
allow important specializations often not achievable by par­
tial evaluation, are not designed for performing unfolding, 
which is one of the basic optimization techniques used by 
partial evaluators. 

On the other hand, the drawbacks of traditional partial 
evaluation techniques for propagating success information 
are identified in [LS96] and some of the possible advantages 
of a full integration of partial evaluation and abstract inter­
pretation are presented in [Jon97]. 

To the best of our knowledge, the first framework which 
presents a full integration of abstract interpretation and par­
tial evaluation is [PGH97], on which this paper is based. 

More recently, a different formulation of such an integration 
has been presented in [Leu98]. In this formulation a top-
down specialization algorithm is presented which assumes 
the existence of an abstract unfolding function, possibly not 
based on concrete unfolding, which generalizes existing al-
gorithms for partial evaluation. Rather strong conditions 
are assumed over the behaviour of the abstract unfolding 
function. Unfortunately, no method is given for comput-
ing interesting ones except by providing relatively simple 
examples based on concrete unfolding. Also, the top-down 
algorithm proposed suffers from the same problems as tradi­
tional partial evaluation: lack of success propagation. This 
problem is solved by integrating the top-down algorithm 
with a bottom-up abstract interpretation algorithm which 
approximates success patterns. Note that this alternative 
corresponds to alternative 3 for local control (see Section 5.2, 
or [PGH97]). The main difference is that in our approach a 
single (and already existing) top-down abstract interpreta­
tion algorithm augmented with an unfolding rule performs 
propagation of both the cali and success patterns in an in-
tegrated fashion. 

Another difference between the two approaches is that 
[Leu98] is capable of dealing with conjunctions and not only 
atoms. This allows conjunctive partial evaluation [LSdW96] 
but adds an additional level of complexity to the control of 
program specialization: in order to guarantee termination a 
mechanism needs to be provided for deciding when and how 
to split conjunctions into components. While a similar form 
of conjunctive partial evaluation could be easily included in 
our framework, there is another pragmatic reason for not 
doing so: in general, existing abstract interpreters (and par­
tial evaluators) only analyze (specialize) atoms individually, 
and we aim at reusing as much of existing analyzers as pos­
sible, an objective which is a further difference between our 
work and [Leu98]. 

7 Conclusions 

We have proposed an integration of traditional partial eval­
uation into standard, generic, top-down abstract interpreta­
tion frameworks. We now summarize the main conclusions 
which can be derived from this work. As seen in [PH95], 
a multiply specialized program can be associated to every 
abstract interpretation which is multivariant on calis. Ab­
stract interpretation can be regarded as having the simple 
local control strategy of always performing one unfolding 
step. However, useful specialization can be achieved if the 
global control is powerful enough. The global control is 
closely related to the abstract domain which is used, since 
this determines the multivariance of the analysis. If the ab­
stract domain is finite (as is often the case), global control 
may simply be performed by the abstraction function of the 
abstract domain. However, if the abstract domain is infi­
nite (as is required for partial evaluation), global control 
has to be augmented with a widening operator in order to 
ensure termination. The strategies for global control used 
in partial evaluation, such as those based on characteristic 
trees [GB91, LD97], on global trees [MG95], and on com­
binations of both [LM96], are then applicable to abstract 
interpretation. We have discussed different alternatives for 
introducing more powerful local unfolding strategies in ab­
stract interpretation, such as unfolding the specialized pro­
gram derived from abstract interpretation, or incorporating 
unfolding into the analysis algorithm. In the latter case, it 



can be proved that the set of atoms AAI computed by ab-
stract interpretation is as good as or better approxiination 
of the computation than the set of atoms APE computed by 
traditional on-line partial evaluation with the corresponding 
global and local control, due to the better success propaga-
tion of abstract interpretation. 
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