
An Integration of Partial Evaluation in a Generic
Abstract Interpretation Framework

Germán Puebla and Manuel Hermenegik
Department of Computer Science

Technical University of Madrid (UPM)
{german,h.erme}@f i . upm. es

Abstract

Information generated by abstract interpreters has long been
used to perform program specialization. Additionally, if the
abstract interpreter generates a multivariant analysis, it is
also possible to perform múltiple specialization. Informa­
tion about valúes of variables is propagated by simulating
program execution and performing fixpoint computations
for recursive calis. In contrast, traditional partial evalua-
tors (mainly) use unfolding for both propagating valúes of
variables and transforming the program. It is known that
abstract interpretation is a better technique for propagat­
ing success valúes than unfolding. However, the program
transformations induced by unfolding may lead to impor-
tant optimizations which are not directly achievable in the
existing frameworks for múltiple specialization based on ab­
stract interpretation. The aim of this work is to devise a
specialization framework which integrates the better infor-
mation propagation of abstract interpretation with the pow-
erful program transformations performed by partial evalua­
tion, and which can be implemented via small modifications
to existing generic abstract interpreters. With this aim, we
will relate top-down abstract interpretation with traditional
concepts in partial evaluation and sketch how the sophisti-
cated techniques developed for controlling partial evaluation
can be adapted to the proposed specialization framework.
We conclude that there can be both practical and concep­
tual advantages in the proposed integration of partial eval­
uation and abstract interpretation.

Keywords : Logic Programming, Abstract Interpretation,
Partial Evaluation, Program Specialization.

1 Introduction

Partial evaluation [JGS93, DGT96] specializes programs for
known valúes of the input. Partial evaluation of logic
programs has received considerable attention [Neu90, LS91,
Sah93, Gal93, Leu97] and several algorithms parameterized
by different control strategies have been proposed which pro­
duce useful partial evaluations of programs. Regarding the
correctness of such transformations, two conditions, defined
on the set of atoms to be partially evaluated, have been
identified which ensure correctness of the transformation:
"closedness" and "independence" [LS91].

Prom a practical point of view, effectiveness, that is, find-
ing suitable control strategies which provide an appropriate
level of specialization while ensuring termination, is a cru-

\o John P. Gallagher
Department of Computer Science

University of Bristol
j ohn@cs .bris.ac.uk

cial problem which has also received considerable attention.
Much work has been devoted to the study of such control
strategies in the context of "on-line" partial evaluation of
logic programs [MG95, LD97, LM96]. Usually, control is di-
vided into components: "local control," which controls the
unfolding for a given atom, and "global control," which en-
sures that the set of atoms for which a partial evaluation is
to be computed remains finite.

In most of the practical algorithms for program spe­
cialization, the above mentioned control strategies use, to
a greater or lesser degree, information generated by static
program analysis. One of the most widely used techniques
for static analysis is abstract interpretation [CC77, CC92].
Some of the relations between abstract interpretation and
partial evaluation have been identified before [GCS88, GH91,
Gal92, CK93, PH95, LS96, PH97, Jon97, PGH97, Leu98].
However, the role of analysis is so fundamental that it is nat­
ural to consider whether partial evaluation could be achieved
directly by a generic, top-down abstract interpretation sys-
tem such as [Bru91, MH92, CV94]. With this question in
mind, we present a method for generating a specialized pro­
gram directly from the output (an and-or graph) of such a
generic, top-down abstract interpreter. We then explore two
main questions which arise. First, how much specialization
can be performed by an abstract interpreter, compared to
on-line partial evaluation? Second, how do the traditional
problems of local and global control appear when placed in
the setting of generic abstract interpretation? We conclude
that there seem to be practical and conceptual advantages
in using an abstract interpreter to perform program special­
ization.

2 Abstract Interpretation

Abstract interpretation [CC77] is a technique for static pro­
gram analysis in which execution of the program is simulated
on an abstract domain (Da) which is simpler than the actual,
concrete domain (D). Abstract valúes and sets of concrete
valúes are related via a pair of monotonic mappings (a,j):
abstraction a : D —> Da, and concretization 7 : Da —y D.

We recall some classical definitions in logic programming.
An atom has the form p(ti, ...,t„) where p is a predicate
symbol and the í¿ are terms. We often use t to denote a tupie
of terms. A clause is of the form H: - S i , . . . , Bn where H,
the head, is an atom and Bi,..., Bn, the body, is a possibly
empty finite conjunction of atoms. A definite logic program,
or program, is a finite sequence of clauses.

Goal dependent abstract interpretation takes as input a

mailto:ohn@cs.bris.ac.uk

program P, a predícate symbol1 p (denoting the exported
predícate), and, optionally, a restriction of the run-time
bindings of p expressed as an abstract substitution A in the
abstract domain Da. Such an abstract interpretation com­
putes a set of triples Analysis(P,p,\,Da) = {(pi,Ai,Af),
. . . , {pn, Xñ, \n)}- I n each triple (p¿, Af, Af}, p¿ is an atom
and Af and Af are, respectively, the abstract cali and success
substitutions. Correctness of abstract interpretation guar-
antees:

• The abstract success substitutions cover all the con­
crete success substitutions which appear during exe-
cution, i.e., Vi = l..n \/8c € 7(Af) if pi6c succeeds in P
with computed answer ds then 6S € 7(Af).

• The abstract cali substitutions cover all the concrete
calis which appear during execution. Ve that oceurs in
the concrete computation of p6 s.t. 9 E 7(A) where p
is the exported predícate and A the description of the
initial calis of p 3{pj, AJ, A }̂ e Analysis(P,p,\,Da)
s.t. c = pjd' and 8' € 7(AJ). This property is related
to the closedness condition [LS91] required in partial
deduction.

As usual in abstract interpretation, _L denotes the abstract
substitution such that 7(-L) = 0. A tupie (p.,, AJ, _L) in-
dicates that all calis to predícate pj with substitution 6 e
7(AJ) either fail or loop, i.e., they do not produce any success
substitutions.

An analysis is said to be multivariant on calis if more
than one triple (p, A ,̂ Af), . . . , (p, A", A*) n > 0 with Af ^ AJ
for some i,j may be computed for the same predícate. Note
that if n = 0 then the corresponding predícate is not needed
for solving any goal in the considered class (p, A) and is
thus dead code and may be eliminated. An analysis is
said to be multivariant on successes if more than one triple
(p, Ac, Af}, • • • ,{p, Ac, A^} n > 0 with Af ^ Aj for some i, j
may be computed for the same predícate p and cali sub­
stitution Ac. Different analyses may be defined with differ-
ent levéis of multivariance [VDCM93]. However, unless the
analysis is multivariant on calis, little specialization may be
expected in general. Many implementations of abstract in-
terpreters are multivariant on calis. However, most of them
(such as PLAI [MH89, MH90, MH92]) are not multivariant
on successes, mainly for efRciency reasons. As a result, and
as we are interested in reusing existing abstract interpreters
for performing partial evaluation, we will limit in principie
our discussion to analyses which are multivariant on calis
but not on successes. Note that this is not a strong re­
striction for our purposes as traditional partial evaluation
is not multivariant on successes either. Also, code gener-
ation from an analysis which is multivariant on successes
is not straightforward. However, multivariant successes can
in fact be captured by certain abstract domains even if the
analysis is not multivariant on successes, as will be discussed
in Section 5. Note that for analyses not multivariant on suc­
cesses when (p, Ac, Af} , . . . , (p, Ac, \s

n) with n > 1 have been
computed for the same predícate p and cali substitution Ac,
the different substitutions {Af,..., A^} have to be summa-
rized in a more general one (possibly losing aecuracy) As

before propagating this success information. This is done
by means of the least upper bound (lub) operator.2

P(A)

1Extending the framework to sets of predícate symbols is trivial.
! D „ is a poset.

« ^ í x íX/a> íX/a> íX/a>

q (x) r(X)

{ }

q(a) .

{} { }

r(a)

{}

Figure 1: And-or analysis graph

In our case, in order to compute Analysis(P,p,\, Da),
an and-or graph AO(P,p, A, Da) is constructed which en-
codes dependencies among the different triples. Such and-or
graph can be viewed as a finite representation of the (possi­
bly infinite) set of and-or trees explored by the (possibly in­
finite) concrete execution [Bru91]. Finiteness of the and-or
graph (and thus termination of analysis) is achieved by con-
sidering abstract domains with certain characteristics (such
as being finite, or of finite height, or without infinite ascend-
ing chains) or by the use of a widening operator [CC77]. If
it is clear in the context, we will often write AO instead of
AO(P,p, A, Da) for short.

E x a m p l e 2.1 Consider the simple example program be-
low taken from [Leu97].

p(X):-
q (a) .
r (a) .
r (b) .

q(X), r (X) .

We take as initial (exported predícate) the goal p(A) with A
unrestricted using the concrete domain as abstract domain.
In this case, Analysis(P,p(A), {}, D) = {{p(A), {}, {A/a}),
(q(X), {}, {X/a}), (r(X), {X/a}, {X/a})} and Figure 1 de-
piets a possible and-or analysis graph. D

Due to space limitations, and given that it is now well
understood, we do not describe in detail here how to build
analysis and-or graphs. More details can be found in [Bru91,
MH90, MH92, HPMS95, PH96]. The graph has two sorts of
nodes: those which correspond to atoms (called or-nodes)
and those which correspond to clauses (called and-nodes).
Or-nodes are triples (p¿,Af,Af). As before, Af and Af are,
respectively, a pair of abstract cali and success substitutions
for the atom p¿. For clarity, in the figures the atom p¿ is
superscripted with Ac to the left and As to the right of p¿
respectively. For example, the or-node (p(A),{}, {A/a}) is
depicted in the figure as ^'p(AyA'a'. And-nodes are pairs
{Id, H) where Id is a unique identifier for the node and H
is the head of the clause the node refers to. In the figures,
they are represented as triangles and H is depicted to the
right of the triangles. Note that the substitutions (atoms)
labeling and-nodes are concrete whereas the substitutions
labeling or-nodes are abstract. Finally, squares are used
to represent the empty (true) atom. Or-nodes have ares

Algoríthm 2.2 [Code Generation] Given Analysis(P,p, A, Da) and AO(P,p, A, Da) generated by analysis
for a program P and an atomic goal «— p with abstract substitution A £ Da, and a partial concretization
function partjsonc do:

• For each tupie TV = (a(í),Ac,As) € Analysis(P,p,\,Da) genérate a distinct predícate with ñame
predjv = name((a(I), Ac, As}).

Each predícate predjy is defined by

— predi? (t) : - fail

— (predjv(ti) : - &i)0i : : . . . : : (predjv(íK) •- b'n)8n

where expansion(N, AO) = ON and
chüdren{ON, AO) = (7di,pi(ti)) : : . . . : : {i"d¿,p¿(í¿)}

Each body 6'¡ is defined as

— b'i = fail

:: (Id„,p(t„))

- b'i = (predíi(t i i) , . . . ,prediki(tiki))
where predij = name({aij(Uj), X¡j, Xfj)), and
chüdren{(Idi,p{ti)),AO) = <a¿i(*¿i), Xc

a, X
s
a) :: ... :: {aiki(tiki), \c

ik., \¡k.).

Each substitution 8i is defined as

8i = mgu^stdipartjson^Xfn)),..., std(partjsonc(\ik.)))

if As = _l_

otherwise

otherwise

if b'i = fail

otherwise

Figure 2: Algorithm for Code Generation

to and-nodes which represent the clauses with which the
atom (possibly) unifies. And-nodes have ares to or-nodes
which represent the atoms in the body of the clause. Note
that several instances of the same clause may exist in the
analysis graph of a program. In order to avoid confliets
with variable ñames, clauses are standardized apart before
adding to the analysis graph the nodes which correspond
to such clause. This way, only nodes which belong to the
same clause may share variables. As the head of the clause
(after the standardizing renaming transformation) is stored
in the and-node, we can always reconstruct (a variant of)
the original clause when generating code from an and-or
graph (see Section 3 below).

Intuitively, analysis algorithms are just graph traversal
algorithms which given P, p, A, and Da build AO(P,p, A, Da)
by adding the required nodes and computing success sub-
stitutions until a global fixpoint is reached. For a given
P, p, A, and Da there may be many different analysis graphs.
However, there is a unique least analysis graph which gives
the most precise information possible. This analysis graph
corresponds to the least fixpoint of the abstract semantic
equations. Each time the analysis algorithm creates a new
or-node for p and Ac and before computing the correspond-
ing As, it checks whether Analysis(P,p, A, Da) already con-
tains a tupie for (a variant of) p and Ac. If that is the
case, the or-node is not expanded and the already computed
As stored in Analysis(P,p, A, Da) is used for that or-node.
This is done both for efficieney and for avoiding infinite
loops when analyzing recursive predicates. As a result, sev­
eral instances of the same or-node may appear in AO, but
only one of them is expanded. We denote by expansion(N)
the instance of the or-node N which is expanded. If there
is no tupie for p and Ac in Analysis(P,p,\,Da), the or-
node is expanded, Xs computed, and (p, AC,AS) added to
Analysis(P,p,\,Da). Note that the success substitutions

As stored in Analysis(P,p, A, Da) are tentative and may be
updated during analysis. Only when a global fixpoint is
reached the success substitutions are safe approximations of
the concrete success substitutions.

3 Code Generation from an And-Or Graph

The information in Analysis(P,p, A, Da) has long been used
for program optimization. Múltiple specialization is a pro­
gram transformation technique which allows generating sev­
eral versions p i , . . . ,pn n > 1 for a predícate p in P. Then,
we have to decide which of p i , . . . ,pn is appropriate for each
cali to p. One possibility is to use run-time tests to de­
cide which versión to use. If analysis is multivariant on
calis but not on successes, another possibility, as done in
[Win92, PH95], is to genérate code from AO(P,p, A, Da) in-
stead of Analysis(P,p, A, Da). The ares in AO(P,p, A, Da)
allow determining which p¿ to use at each cali. Then, each
versión of a predícate receives a unique ñame and calis are
renamed appropriately.

After introducing some notation, an algorithm which
generates a logic program from an analysis and-or graph
is presented in Figure 2 (Algorithm 2.2). Given a non-
root node N, we denote by parent(N, AO) the node M £
AO such that there is an are from M to N in AO, and
children(N, AO) is the sequence of nodes JVi : : . . . : : Nn n >
0 such that there is an are from N to N' in AO iff N' = N{

for some i and Vi, j = 0 , . . . , n iV» is to the left of N¡ in AO
iff i < j . Note that children(N, AO) may be applied both to
or- and and-nodes. We assume the existence of an injective
function ñame which given Analysis(P,p, A, Da) returns a
unique predícate ñame for each tupie and name({g(í), Ac, As))
q iff g(í) = p (the exported predícate) and Ac = A (the re-
striction on initial goals), to ensure that top-level - exported

- predícate ñames are preserved.

Deñnítion 3.1 [partial concretization] A function
part-conc : Da —> D is a pariial concretization ifF VA E
Da W € 7(A) 30" s.t. 8' = partjsonc(\)8".
partjconc{\) can be regarded as containing (part of) the def-
inite information about concrete bindings that the abstract
substitution A captures. Note that different partial con-
cretizations of an abstract substitution A with different accu-
racy may be considered. For example if the abstract domain
is a depth-k abstraction and A = {X/f(f(Y))orX/f(a)}, a
most accurate partuconc(X) is {X/f(Z)}. Note also that
part_conc(\) = e where e is the empty substitution, is a
trivially correct partial concretization of any A.

Deñnítion 3.2 [specialization] Let P be a defmite pro-
gram. Let AO(P,p, A, Da) be an and-or graph. We say that
a program P' is a specialization of P w.r.t. AO(P,p, \,Da)
and part-conc and we denote it P' = spec(AO(P,p, X,Da),
part-conc) iff P' can be obtained by applying Algorithm 2.2
to AO(P,p, A, Da) using part-conc.

Basically, Algorithm 2.2 for code generation creates a dif­
ferent versión for each different (abstract) cali substitution
Ac to each predicate p¿ in the original program. This is easily
done by associating a versión to each or-node. Note that if
we always take the trivial substitution e as partjconc(X) for
any A (such as in [PH95]) then such versions are identical ex-
cept that atoms in clause bodies are renamed to always cali
the appropriate versión.3 The interest in performing the
proposed múltiple specialization is that the new program
may be subject to further optimizations, such as elimina-
tion of redundant type/mode checks, which are allowed in
the multiply specialized program because now each versión
it to be used for a more restricted set of input valúes than in
the original program. Additionally, in Algorithm 2.2 predi-
cates whose success substitution is _L are directly defined as
p(t) : — fail, as it is known that they produce no answers.
Even if the success substitution As for (p, Ac, As) is not _L,
individual clauses for p whose success substitution is _L (use-
less clauses) for the considered Ac are removed from the final
program.

By mgu we denote, as usual, the most general unifier
of substitutions. std represents the result of standardizing
apart the results of part-conc in order to avoid undesired
variable ñame clashes. Note that in Algorithm 2.2 atoms are
specialized w.r.t. answers rather than calis, as is the case in
traditional partial evaluation. This will in general provide
further specialized (and optimized) programs as in general
the success substitution (which describes answers) computed
by abstract interpretation is more informative (restricted)
than the cali substitution. However, this cannot be done for
example if the program contains calis to extra-logical pred-
icates such as va r /1 . Other more conservative algorithms
can be used for such cases and for programs with side-effects.
Using Algorithm 2.2 it is sometimes possible to detect infi­
nite failures of predicates and replace predicate definitions
and/or clause bodies by f a i l , which is not possible in par­
tial evaluation, as the number of unfolding steps must be
finite. Additionally, as mentioned above, dead code, i.e.,
clauses not used to solve the considered goal, are removed.

Note that Algorithm 2.2 is an improvement over the
code-generation phase of [PH95, PH97] in that it allows
applying non-trivial partial concretizations of the abstract

The program obtained in this way is programo in the notation
of [PH95].

P(A)

{ }

{X/a} ""- {X/a}

r(X)

{} \ {Y/a} ,' «

q(Y) —'

r(a)

{ }

Figure 3: And-or analysis graph for a recursive program

(success) substitutions. The program obtained by Algo­
rithm 2.2 can then be further optimized by applying the
notion of abstract executability as presented in [PH97], which
reduces an atom w.r.t. an abstract substitution.

T h e o r e m 3.3 Let AO(P, p, A, Da) be an analysis and-or
graph for a defmite program P and an atomic goal <— p
with the abstract cali substitution A € Da. Let P' be the
program obtained from AO(P,p, A, Da) by Algorithm 2.2.
Then V6>c s.t. 8C e 7(A)

i) p6c succeeds in P' with computed answer 8S iff p8c

succeeds in P with computed answer 8S.

ii) if p8c finitely fails in P then p8c finitely fails in P'.

Thus, both computed answers and finite failures are pre­
served. However, the specialized program may fail finitely
while the original one loops (see Example 4.2).

4 And-Or Graphs Vs. SLD Trees

It is known [LS96] that the propagation of success informa­
tion during partial evaluation is not optimal compared to
that potentially achievable by abstract interpretation.

Example 4.1 Consider the program of Example 2.1. The
program obtained by applying Algorithm 2.2 to the and-or
graph in Figure 1 is:

p(a) : - q(a) ,
q (a) .
r (a) .

r (a) .

Note that Algorithm 2.2 may perform some degree of
specialization even if no unfolding is performed. The infor­
mation in AO(P,p, A, Da) allows determining that the cali
to r(X) will be performed with X=a and thus the second
clause for r can be eliminated. Such information can only
be propagated in partial evaluation by unfolding the atom
q(X). D

Example 4.2 Consider again the goal and program of Ex­
ample 2.1 to which a new clause q(X) : - q(X) . is added for

predícate q. The and-or graph for the new program is de-
picted in Figure 3. The dotted are indicates that the cor-
responding or-nodes have equivalent abstract cali substitu-
tion. However, the set of tupies in Analysis(P' ,p(A), {}, D)
for the current program P' is exactly the same as in Exam-
ple 2.1, in spite of the more involved and-or graph in this
example. The program generated for this graph by Algo-
rithm 2.2 is the following:

p(a) : - q(a) , r (a) .
q (a) .
q(a) : - q(a) .
r (a) .

The fact that r(X) will only be called with X=a cannot be
determined by any finite unfolding rule. Note that the origi­
nal program loops for the goal «— p(b) while the specialized
one fails finitely. ü

The two examples above show that and-or graphs allow
a level of success information propagation not possible in
traditional partial evaluation, either because the unfolding
rule is not aggressive enough (Example 4.1) or because the
required unfolding would be infinite (Example 4.2). This ob-
servation already provides motivation for studying the inte-
gration of full partial evaluation in an analysis/specialization
framework based on abstract interpretation.

In addition, the fact that such a framework can work
uniformly with abstract or concrete substitutions makes it
more general than partial evaluation and may allow perform-
ing optimizations not possible in the traditional approaches
to partial evaluation. An additional pragmatic motivation
for this work is the availability of off-the-shelf generic ab­
stract interpretation engines such as PLAI [MH92] or GAIA
[CV94] which greatly facilitate the efficient implementation
of analyses. The existence of such an abstract interpreter in
advanced optimizing compilers is likely, and using the ana-
lyzer itself to perform partial evaluation can result in a great
simplification of the architecture of the compiler.

5 Partial Evaluation using And-Or Graphs

We have established so far that for a given abstract inter­
pretation of a program in a system such as PLAI (even in-
terpretations over very simple domains such as modes) we
can get some corresponding specialized source program with
possibly múltiple versions by applying Algorithm 2.2. Cor-
reetness of abstract interpretation ensures that the set of
triples computed by analysis must cover all calis performed
during execution of any instance of the given initial goal
(p, A). This condition is strongly related to the closedness
condition of partial evaluation [LS91]. Furthermore there
are well-understood conditions and methods for ensuring
termination of an abstract interpretation.

Thus, an important conceptual advantage of formaliz-
ing partial evaluation in terms of abstract interpretation is
that two of the main concerns of partial evaluation algo-
rithms - namely, correetness and termination - are treated
in a very general and flexible way by the general principies,
methods, and formal results of abstract interpretation. The
other important concern is the degree of specialization that
is achieved, which is determined in partial evaluation by the
local and global control. We now examine how these control
issues appear in the setting of abstract interpretation.

5.1 Global Control in Abstract Interpreta­
tion

Effectiveness of program specialization greatly depends on
the set of atoms A = {Ai,..., An} for which (specialized)
code is to be generated. In partial evaluation, this mainly
depends on the global control used. If we use the specializa­
tion framework based on abstract interpretation, the num­
ber of specialized versions depends on the number of or-
nodes in the analysis graph. This is controlled by the choice
of abstract domain and widening operators (if any). The
finer-grained the abstract domain is, the larger the set A
will be. In conclusión, the role of so-called global control
in partial evaluation is played in abstract interpretation by
our particular choice of abstract domain and widening op­
erators (which are strictly required for ensuring termination
when the abstract domain contains ascending chains which
are infinite - as is the case for the concrete domain).

Note that the specialization framework we propose is
very general. Depending on the kind of optimizations we are
interested in performing, different domains (and widening
operators) should be used and thus different A sets would
be obtained. For example, if we are interested in eliminat-
ing redundant groundness tests, our abstract domain could
in principie collapse the two atoms p(l) and p(2) into one
p(ground) since, from the point of view of the optimization,
whether p is called with the valué 1 or 2 is not relevant.

While the main aim of global control is to ensure termi­
nation and to avoid generating too many superfluous ver­
sions, it may often be the case that global control (or the
domain) does not collapse two versions in the hope that
they will lead to different optimizations. If this is not the
case, a minimizing step may be performed a posteriori on
the and-or graph in order to produce a minimal number of
versions while maintaining all optimizations. This was pro-
posed in [Win92], implemented in [PH95] and also discussed
in [LM95]. We intend to extend the minimizing algorithm
in [PH95] for the case of optimizations based on unfolding.

5.2 Local Control in Abstract Interpreta­
tion

Local control in partial evaluation determines how each atom
in A should be unfolded. However, in traditional frame-
works for abstract interpretation we usually have a choice
for abstract domain and widening operators, but no choice
for local control is offered. This is because by default, in
abstract interpretation each or-node is related by just one
(abstract) unfolding step to its children. This corresponds to
a trivial local control (unfolding rule) in partial evaluation.

Unfolding is a well known program transformation tech-
nique in which an atom in the body of a clause, which can be
seen as a cali to a procedure, is replaced by the code of such
procedure. We now introduce the notion of node-unfolding
which is a graph transformation technique which given an
and-or graph AO and an or-node N in AO builds a new
and-or graph AO'. Such graph transformation mimics the
effect of unfolding an atom in a program.

Definition 5.1 [clause-unfolding]
Let A = (Id,H) be an and-or node in AO(P,p, A, Da)

s.t. children(A, AO) = L\ : : . . . : : N :: . . . L m with va > 1
and N = (a, Ac, As). Let also C = Hc : - B i , . . . , B„ be a
clause in program P whose head He unifies with atom a.

P(A)

A O

{}P(A)»
{ } / - A 4 > P(A)

A O ' A O "

Figure 4: Example Node Unfoldings

The clause-unfolding of A and N w.r.t. C, denoted
cLunf(A,N,C), is the (partial) and-or graph AO' with
root A' = {Id, H8) such that 8 is a mgu of a and He and
children(A', AO') = L\ : : . . . : : iVi :: . . . Nn :: ... L'm.

Each or-node Nj is of the form (BJ,\CJ,\J), where
AJ and Aj have to be computed by the analysis algo-
rithm as usual. Provided that L¡ = (p¿,A¿,A¿) then,
Ui = (pi8,Aadd(8,Xc

i),Aadd(8,X¡)) where Aadd(8,\) up-
dates the abstract substitution A by conjoining it with the
concrete substitution 8 (see for example [HPMS95]). A dis-
cussion on the effeets of performing such conjoining (aecu-
racy vs. efficieney) can be found in Section 5.3.

As usual, mgu denotes a most general unifier, in this case
of two atoms. Clause-unfolding mimics the effect of an SLD
resolution step.

Deñnítion 5.2 [node-unfolding]
Let N = (a, \c, As) be a non-empty or-node in AO. Let

Ci : : . . . : : Cn n > 1 be the sequence of standardized apart
clauses in program P s.t. a unifies with the head of C¿. Let
parent(N,AO) = A, and let parent(A,AO) = GP with
chüdren(GP, AO) = Pi :: . . . :: A :: . . . P¿, i > 1.

The node-unfolding of AO w.r.t. N, denoted node-
unfolding(AO, N) is the and-or graph AO' obtained from
AO by making children(GP,AO') be Pi :: . . . ::
cLunf(A, N,Ci) :: ... :: cLunf(A, N,Cn) •••••• Pi and elim-
inating nodes A and TV.

Node unfolding is achieved by performing clause-
unfolding with all clauses in the program whose head unifies
with the unfolded atom.

Theorem 5.3 [node-unfolding] Let AO(P,p, A, Da) be a
(partially computed) and-or graph. Let part-conc be a par­
tial concretization function, let PAO = spec(AO(P,p, A, Da),

partjconc). Let N be an or-node in AO, let AO' = node-
unfolding(AO,N), and let P' = spec(AO',part.conc). Then
\/8c s.t. 8C 6 7(A)

i) p8c succeeds in P' with computed answer 8S iff p8c

succeeds in PAO with computed answer 8S.

ii) if p8c fmitely fails in PAO then p8c finitely fails in P'.

Theorem 5.3 guarantees correetness of node-unfolfing as
it states that performing node-unfolding on an and-or graph
preserves computed answers and finite failures.

Example 5.4 Reconsider the program of Example 2.1 in
which an additional clause q(b) . has been added to predi-
cate q. The new analysis graph generated without perform­
ing any node-unfolding is shown in Figure 4 as AO, using
the concrete domain as abstract domain and the most spe-
cific generalization (msg) as lub operator for summarizing
different success substitutions into one. As discussed in Sec­
tion 5.5 below, the msg is a rather crude lub operator.
However, we use it for the sake of clarity of the example.
AO' is an analysis graph for the same program but this time
the or-node {q(X), {}, {}} has been unfolded. Finally, graph
AO" in the figure is the result of applying node-unfolding
twice to AO', once w.r.t. (p{a), {}, {}) and another one w.r.t
(j)(b), {}, {}}. The code generated by spec(AO",partjzon¿)
(for any partjsonc) is the program:
p (a) .
p (b) .

5.3 Strategies for Local Control
Several possibilities exist in order to overeóme the simplicity
of the local control performed by abstract interpretation:

1. According to many authors, [Gal93, LM96] global con­
trol is much harder than local control. Thus, one pos-
sibility is to obtain AO using the traditional analysis
algorithm. Subsequent unfolding spec(AO, partjconc)
can be done using traditional unfolding rules in order
to elimínate determínate calis or some non-recursive
calis, for example. The and-or analysis graph AO may
be of much help in order to detect such cases.

2. A second alternative it to use abstract domains for
analysis which allow propagating enough information
about the success of an or-node so as to perform use-
ful specialization on other or-nodes. This requires that
the Ivb operator not lose "much" information, for ex­
ample by allowing sets of abstract substitutions. The
advantage of this method is that no modification of the
abstract interpretation framework is required. Also, as
we will see in Example 5.5, it may allow specializations
which are not possible by the methods proposed below
(ñor by traditional partial evaluation).

3. Another possibility is a simple modification to the al­
gorithm for abstract interpretation in order to accom-
modate a node-unfolding rule. In this approach, if the
node-unfolding rule decides that an or-node N in a,
graph AO should not be unfolded, then TV is treated
as in the traditional abstract interpretation algorithm.
If the rule decides that N should be unfolded, AO' =
node-unfolding(AO, N) is computed and analysis con­
tinúes for the new graph AO'. Note that in order to
unfold N it is not required to know its success substi­
tution. Thus, the graph transformation associated to
an unfolding is merely structural and can be performed
before or after computing the and-or graph below N.
If decisions on unfolding are taken before computing
the nodes below N, the unfolding rule corresponds to
those used in partial evaluation: only the history of
nodes higher in the top-down algorithm is available
for deciding whether to unfold or not. However, we
can delay this decisión until the graph below N has
been computed. This allows making better decisions
as also the specialization history of atoms lower in the
hierarchy is known.

In the latter case, if N is not the leftmost atom in its
clause and the abstract domain is downwards closed,
there is a choice of whether to apply the (sequence
of) success substitution (s) for N to the sibling nodes
L\ :: . . . :: L\,_ to the left of N (i.e., to perform left
propagation) and reanalyze such nodes with the bet­
ter information or not. Both alternatives are correct.
The second alternative may allow better analysis and
specialization, but at a higher computational cost.

4. The last possibility we propose is to first compute AO
with a trivial unfolding rule (i.e., using the traditional
abstract interpretation algorithm). Once analysis has
finished, further unfolding may be performed if de-
sired, as done in the first alternative proposed. How­
ever, unlike the first approach, rather than performing
unfolding externally to the analysis and without mod-
ifying the analysis graph, whenever an unfolding step
is performed for a node N in AO, a new analysis graph
AO' = node-unfolding(AO, N) is computed.

This approach can be seen as an extreme case of de-
laying node-unfolding, not only until the graph be­

low N has been computed (as mentioned in the third
approach) but rather until a global fixpoint has been
reached for the whole analysis graph. The difference
with the third approach is that there, unfolding is com-
pletely integrated in abstract interpretation and the lo­
cal control decisions are taken when performing analy­
sis and as mentioned before, the only issue is whether
to perform left propagation of bindings or not. The
advantage over the previous approach is that unfold­
ing is performed once the whole analysis graph has
been computed. The benefits of the availability of such
better information for local control still have to be ex-
plored. The disadvantage is that in order to achieve as
accurate information as possible it may be required to
perform reanalysis in order to propágate the improved
information introduced due to the additional unfolding
steps, i.e., using {piO, Aadd(8, A£), Aadd(0, Af)} instead
of (J>Í, Af, Af) for the nodes to the right of the unfolded
node, with the associated computational cost. This
cost could however be kept quite reasonable by the
use of incremental analysis techniques such as those
presentedin [HPMS95, PH96].

E x a m p l e 5.5 Consider the following program and the goal
<-r(X)

r(X) : - q(X),p(X).
q (a) .
q(f(X)) : - q(X).
p (a) .
p(f(X)) : - p(X).
p(g(X)) : - p(X).

The third clause for p can be eliminated in the specialized
program for <— r(X), provided that the cali substitution for
p(X) (i.e., the success substitution for q(X)) contains the
information that X=a or X=f (Y). The abstract domain has
to be precise enough to capture, in this case, at least the set
of principal functors of the answers.

Note that no partial evaluation algorithm based on un­
folding will be able to eliminate the third clause for p, since
an atom of form p (X) will be produced, no matter what local
and global control is used.4 Thus, simulating unfolding in
abstract interpretation (such as methods 1, 3, and 4 above
do) will not achieve this specialization either. An approach
such as 2 is required. ü

5.4 Abstract Domains and Widenings for
Partial Evaluation

Once we have presented the relation between abstract do­
mains and widening with global control in partial evaluation,
in this section we discuss desired features for performing par­
tial evaluation. Ideally, we would like that

• The domain can simúlate the effect of unfolding, which
is the means by which bindings are propagated in par­
tial evaluation. Our abstract domain has to be capable
of tracking such bindings. This suggests that domains
based on term structure are required.

• In addition, the domain needs to distinguish, in a
single abstract substitution, several bindings result-
ing from different branches of computation in order

4Conjunctive partial deduction [LSdW96] can solve this problem
in a completely different way.

to achieve the approach 2 for local control. A term
domain whose least upper bound is based on the msg
(most specific generalization), for instance, will rapidly
lose information about múltiple answers since all sub-
stitutions are combined into one binding.

Two examples of classes of domain which have the above
desirable features are:

• The domain of type-graphs [BJ92], [GdW94], [HCC94].
Its drawback is that inter-argument dependencies are
lost.

• The domain of sets of depth-fc substitutions with set
unión as the least upper bound operator. However uni-
form depth bounds are usually either too imprecise (if
k is too small) or genérate much redundancy if larger
valúes of k are chosen.

One way to elimínate the depth-bound k in the abstract
domain it to depend on a suitable widening operator which
will guarantee that the set of or-nodes remains finite. Many
techniques have been developed for global control of partial
evaluation. Such techniques make use of data structures
which are very related to the and-or analysis graph such
as characteristic trees [GB91], [Leu95] (related to neighbor-
hoods [Tur88]), trace-terms [GL96], and global trees [MG95],
and combinations of them [LM96]. Thus, it seems possible
to adapt these techniques to the case of abstract interpreta-
tion and formalize them as widening operators.

6 Related Work

The integration of partial evaluation and abstract interpre-
tation has been attempted before, both from a partial eval­
uation and abstract interpretation perspective. In [GCS88,
Gal92] such an integration is attempted from the point of
view of partial evaluation. However, the approach is only
partially successful as the resulting specialization framework
does not exploit the full power of abstract interpretation.
Another attempt for functional rather than logic programs
is presented in [CK93].

From an abstract interpretation perspective, the integra­
tion has also received considerable attention. In [GH91], ab­
stract interpretation is used to perform múltiple specializa­
tion in an ad-hoc way. Also in [GH91] the notion of abstract
executability is presented (and later formalized in [PH97])
and applied to remove redundant builtin checks. The first
complete framework for múltiple specialization based on ab­
stract interpretation is presented in [Win92]. The first im-
plementation and experimental evaluation is presented in
[PH95] together with a framework based on existing ab­
stract interpreters. All these techniques, even though they
allow important specializations often not achievable by par­
tial evaluation, are not designed for performing unfolding,
which is one of the basic optimization techniques used by
partial evaluators.

On the other hand, the drawbacks of traditional partial
evaluation techniques for propagating success information
are identified in [LS96] and some of the possible advantages
of a full integration of partial evaluation and abstract inter­
pretation are presented in [Jon97].

To the best of our knowledge, the first framework which
presents a full integration of abstract interpretation and par­
tial evaluation is [PGH97], on which this paper is based.

More recently, a different formulation of such an integration
has been presented in [Leu98]. In this formulation a top-
down specialization algorithm is presented which assumes
the existence of an abstract unfolding function, possibly not
based on concrete unfolding, which generalizes existing al-
gorithms for partial evaluation. Rather strong conditions
are assumed over the behaviour of the abstract unfolding
function. Unfortunately, no method is given for comput-
ing interesting ones except by providing relatively simple
examples based on concrete unfolding. Also, the top-down
algorithm proposed suffers from the same problems as tradi­
tional partial evaluation: lack of success propagation. This
problem is solved by integrating the top-down algorithm
with a bottom-up abstract interpretation algorithm which
approximates success patterns. Note that this alternative
corresponds to alternative 3 for local control (see Section 5.2,
or [PGH97]). The main difference is that in our approach a
single (and already existing) top-down abstract interpreta­
tion algorithm augmented with an unfolding rule performs
propagation of both the cali and success patterns in an in-
tegrated fashion.

Another difference between the two approaches is that
[Leu98] is capable of dealing with conjunctions and not only
atoms. This allows conjunctive partial evaluation [LSdW96]
but adds an additional level of complexity to the control of
program specialization: in order to guarantee termination a
mechanism needs to be provided for deciding when and how
to split conjunctions into components. While a similar form
of conjunctive partial evaluation could be easily included in
our framework, there is another pragmatic reason for not
doing so: in general, existing abstract interpreters (and par­
tial evaluators) only analyze (specialize) atoms individually,
and we aim at reusing as much of existing analyzers as pos­
sible, an objective which is a further difference between our
work and [Leu98].

7 Conclusions

We have proposed an integration of traditional partial eval­
uation into standard, generic, top-down abstract interpreta­
tion frameworks. We now summarize the main conclusions
which can be derived from this work. As seen in [PH95],
a multiply specialized program can be associated to every
abstract interpretation which is multivariant on calis. Ab­
stract interpretation can be regarded as having the simple
local control strategy of always performing one unfolding
step. However, useful specialization can be achieved if the
global control is powerful enough. The global control is
closely related to the abstract domain which is used, since
this determines the multivariance of the analysis. If the ab­
stract domain is finite (as is often the case), global control
may simply be performed by the abstraction function of the
abstract domain. However, if the abstract domain is infi­
nite (as is required for partial evaluation), global control
has to be augmented with a widening operator in order to
ensure termination. The strategies for global control used
in partial evaluation, such as those based on characteristic
trees [GB91, LD97], on global trees [MG95], and on com­
binations of both [LM96], are then applicable to abstract
interpretation. We have discussed different alternatives for
introducing more powerful local unfolding strategies in ab­
stract interpretation, such as unfolding the specialized pro­
gram derived from abstract interpretation, or incorporating
unfolding into the analysis algorithm. In the latter case, it

can be proved that the set of atoms AAI computed by ab-
stract interpretation is as good as or better approxiination
of the computation than the set of atoms APE computed by
traditional on-line partial evaluation with the corresponding
global and local control, due to the better success propaga-
tion of abstract interpretation.

Refere nces

[BJ92] M. Bruynooghe and G. Janssens. Deriving de-
scriptions of possible valúes of program variables
by means of abstract interpretation. Journal of
Logic Programming, 13(2&3):205-258, 1992.

[Bru91] M. Bruynooghe. A Practical Framework for
the Abstract Interpretation of Logic Programs.
Journal of Logic Programming, 10:91-124, 1991.

[CC77] P. Cousot and R. Cousot. Abstract Interpreta­
tion: a Unified Lattice Model for Static Analy-
sis of Programs by Construction or Approxiina­
tion of Fixpoints. In Fourth ACM Symposium
on Principies of Programming Languages, pages
238-252, 1977.

[CC92] P. Cousot and R. Cousot. Abstract Interpreta­
tion and Application to Logic Programs. Jour­
nal of Logic Programming, 13(2 and 3):103-179,
July 1992.

[CK93] C. Consel and S.C. Koo. Parameterized par­
tial deduction. ACM Transactions on Program­
ming Languages and Systems, 15(3):463-493,
July 1993.

[CV94] B. Le Charlier and P. Van Hentenryck. Experi­
mental Evaluation of a Generic Abstract Inter­
pretation Algorithm for Prolog. ACM Transac­
tions on Programming Languages and Systems,
16(1):35-101, 1994.

[DGT96] O. Danvy, R. Glück, and P. Thiemann, edi­
tora. Partial Evaluation. Number 1110 in LNCS.
Springer, February 1996. Dagstuhl Seminar.

[Gal92] J.P. Gallagher. Static Analysis for Logic Pro­
gram Specialization. In Workshop on Static
Analysis WSA '92, pages 285-294, 1992.

[Gal93] J.P. Gallagher. Tutorial on specialisation of
logic programs. In Proceedings of PEPM'93,
the ACM Sigplan Symposium on Partial Eval­
uation and Semantics-Based Program Manipu-
lation, pages 88-98. ACM Press, 1993.

[GB91] J. Gallagher and M. Bruynooghe. The deriva-
tion of an algorithm for program specialisation.
New Generation Computing, 9(1991):305-333,
1991.

[GCS88] J. Gallagher, M. Codish, and E. Shapiro. Spe­
cialisation of Prolog and FCP Programs Using
Abstract Interpretation. New Generation Com­
puting, 6(2-3):159-186, 1988.

[GdW94] J.P. Gallagher and D.A. de Waal. Fast and pre­
cise regular approximations of logic programs.
In Pascal Van Hentenryck, editor, Proceedings of
the Eleventh International Conference on Logic
Programming, pages 599-613. The MIT Press,
1994.

[GH91] F. Giannotti and M. Hermenegildo. A Tech-
nique for Recursive Invariance Detection and
Selective Program Specialization. In Proc. 3rd.
Int 'l Symposium on Programming Language Im-
plementation and Logic Programming, number
528 in LNCS, pages 323-335. Springer-Verlag,
August 1991.

[GL96] J. Gallagher and L. Lafave. Regular approxi­
ination of computation paths in logic and func-
tional languages. In O. Danvy, R. Glück, and
P. Thiemann, editors, Partial Evaluation, vol-
ume 1110, pages 115 - 136. Springer Verlag Lee-
ture Notes in Computer Science, 1996.

[HCC94] P. Van Hentenryck, A. Cortesi, and B. Le Char­
lier. Type analysis of prolog using type graphs.
Journal of Logic Programming, 22(3):179 - 210,
1994.

[HPMS95] M. Hermenegildo, G. Puebla, K. Marriott, and
P. Stuckey. Incremental Analysis of Logic Pro­
grams. In International Conference on Logic
Programming, pages 797-811. MIT Press, June
1995.

[JGS93] N.D. Jones, C.K. Gomard, and P. Sestoft. Par­
tial Evaluation and Automatic Program Gener­
ation. Prenctice Hall, New York, 1993.

[Jon97] N. D. Jones. Combining Abstract Interpretation
and Partial Evaluation. In Static Analysis Sym­
posium, number 1140 in LNCS, pages 396-405.
Springer-Verlag, 1997.

[LD97] M. Leuschel and D. De Schreye. Constrained
partial deduction and the preservation of char-
acteristic trees. Technical Report CW 250, De-
partement Computerwetenschappen, K.U. Leu-
ven, Belgium, June 1997. Accepted for Publica-
tion in New Generation Computing.

[Leu95] M. Leuschel. Ecological partial deduction: Pre-
serving characteristic trees without constraints.
In M. Proietti, editor, Proceedings of the 5th In­
ternational Workshop on Logic Program Synthe-
sis and Transformation. Springer-Verlag, 1995.

[Leu97] Michael Leuschel. Advanced Techniques for
Logic Program Specialisation. PhD thesis, K.U.
Leuven, May 1997.

[Leu98] M. Leuschel. Program Specialisation and Ab-
stract Interpretation Reconciled. In Joint In­
ternational Conference and Symposium on Logic
Programming, June 1998.

[LM95] M. Leuschel and B. Martens. Global control for
partial deduction through characteristic atoms
and global trees. Technical Report CW 220, De-
partement Computerwetenschappen, K.U. Leu-
ven, Belgium, December 1995.

[LM96] M. Leuschel and B. Martens. Global control for
partial deduction through characteristic atoms
and global trees. In Olivier Danvy, Robert
Glück, and Peter Thiemann, editors, Proceed-
ings of the 1996 Dagstuhl Seminar on Partial
Evaluation, LNCS 1110, pages 263-283, Schlofí
Dagstuhl, 1996.

[LS91] J.W. Lloyd and J.C. Shepherdson. Partial Eval­
uation in Logic Programming. Journal of Logic
Programming, ll(3-4):217-242, 1991.

[LS96] Michael Leuschel and De Schreye. Logic pro­
gram specialisation: How to be more specific.
In H. Kuchen and S.D. Swierstra, editors, Pro-
ceedings ofthe International Symposium on Pro­
gramming Languages, Implementations, Logias
and Programs (PLILP'96), LNCS 1140, pages
137-151, Aachen, Germany, September 1996.

[LSdW96] M. Leuschel, D. De Schreye, and D. A. de Waal.
A conceptual embedding of folding into partial
deduction: towards a maximal integration. In
M. Maher, editor, Proceedings ofthe Joint Int,.
Conf. and Symp. on Logic Programming (JIC-
SLP'96). MIT Press, 1996.

[MG95] B. Martens and J. Gallagher. Ensuring global
termination of partial deduction while allowing
flexible polyvariance. In L. Sterling, editor, Pro­
ceedings ICLP'95, pages 597-611, Shonan Vil-
lage Center, Japan, June 1995. MIT Press.

[MH89] K. Muthukumar and M. Hermenegildo. Deter-
mination of Variable Dependence Information
at Compile-Time Through Abstract Interpreta­
tion. In 1989 North American Conference on
Logic Programming, pages 166-189. MIT Press,
October 1989.

[MH90] K. Muthukumar and M. Hermenegildo. De-
riving A Fixpoint Computation Algorithm for
Top-down Abstract Interpretation of Logic Pro­
grams. Technical Report ACT-DC-153-90, Mi-
croelectronics and Computer Technology Cor­
poration (MCC), Austin, TX 78759, April 1990.

[MH92] K. Muthukumar
and M. Hermenegildo. Compile-time Deriva-
tion of Variable Dependency Using Abstract In­
terpretation. Journal of Logic Programming,
13(2/3):315-347, July 1992. Originally pub-
lished as Technical Report FIM 59.1/IA/90,
Computer Science Dept, Universidad Politéc­
nica de Madrid, Spain, August 1990.

[Neu90] G. Neumann. Transforming interpreters
into compilers by goal classification. In
M. Bruynooghe, editor, Proceedings of the Sec-
ond Workshop on Meta-programming in Logic,
pages 205-217, Leuven, Belgium, 1990. K. U.
Leuven.

[PGH97] G. Puebla, J. Gallagher, and M. Hermenegildo.
Towards Integrating Partial Evaluation in a
Specialization Pramework based on Generic Ab­
stract Interpretation. In M. Leuschel, edi­
tor, Proceedings of the ILPS'97 Workshop on
Specialization of Declarative Programs, October
1997. Post ILPS'97 Workshop.

[PH95] G. Puebla and M. Hermenegildo. Implemen-
tation of Múltiple Specialization in Logic Pro­
grams. In Proc. ACM SIGPLAN Symposium on
Partial Evaluation and Semantics Based Pro­
gram Manipulation, pages 77-87. ACM Press,
June 1995.

[PH96] G. Puebla and M. Hermenegildo. Optimized Al-
gorithms for the Incremental Analysis of Logic
Programs. In International Static Analysis Sym­
posium, number 1145 in LNCS, pages 270-284.
Springer-Verlag, September 1996.

[PH97] G. Puebla and M. Hermenegildo. Abstract Spe­
cialization and its Application to Program Par-
allelization. In J. Gallagher, editor, VI Inter­
national Workshop on Logic Program Synthe-
sis and Transformation, number 1207 in LNCS,
pages 169-186. Springer-Verlag, 1997.

[Sah93] D. Sahlin. Mixtus: An automatic partial evalua-
tor for full Prolog. New Generation Computing,
12(1):7-51, 1993.

[Tur88] V. Turchin. The algorithm of generalization
in the supercompiler. In D. Bj0rner, A.P. Er-
shov, and N.D. Jones, editors, Proc. of the IFIP
TC2 Workshop on Partial Evaluation and Mixed
Computation, pages 531-549. North-Holland,
1988.

[VDCM93] P. Van Hentenryck, O. Degimbe, B. Le Charlier,
and L. Michael. The Impact of Granularity in
Abstract Interpretation of Prolog. In Workshop
on Static Analysis, number 724 in LNCS, pages
1-14. Springer-Verlag, September 1993.

[Win92] W. Winsborough. Múltiple Specialization using
Minimal-Function Graph Semantics. Journal of
Logic Programming, 13(2 and 3):259-290, July
1992.

