7 research outputs found

    Effect of vanadium compounds on acid phosphatase activity

    Get PDF
    The direct effect of different vanadium compounds on acid phosphatase (ACP) activity was investigated. Vanadate and vanadyl but not pervanadate inhibited the wheat germ ACP activity. These vanadium derivatives did not alter the fibroblast Swiss 3T3 soluble fraction ACP activity. Using inhibitors of tyrosine phosphatases (PTPases), the wheat germ ACP was partially characterized as a PTPase. This study suggests that the inhibitory ability of different vanadium derivatives to modulate ACP activity seems to depend on the geometry around the vanadium atom more than on the oxidation state. Our results indicate a correlation between the PTPase activity and the sensitivity to vanadate and vanadyl cation.Facultad de Ciencias Exacta

    Proliferative and morphological changes induced by vanadium compounds on Swiss 3T3 fibroblasts

    Get PDF
    Vanadium compounds are shown to have a mitogenic effect on fibroblast cells. The effects of vanadate, vanadyl and pervanadate on the proliferation and morphological changes of Swiss 3T3 cells in culture are compared. Vanadium derivatives induced cell proliferation in a biphasic manner, with a toxic-like effect at doses over 50 mM, after 24 h of incubation. Vanadyl and vanadate were equally potent at 2.5–10 mM. At 50 mM vanadate inhibited cell proliferation, whereas slight inhibition was observed at 100 mM of vanadyl. At 10 mM pervanadate was as potent as vanadate and vanadyl in stimulating fibroblast proliferation, but no effect was observed at lower concentrations. A pronounced cytotoxic-like effect was induced by pervanadate at 50 mM. All of these effects were accompanied by morphological changes: transformation of fibroblast shape from polygonal to fusiform; retraction with cytoplasm condensation; and loss of lamellar processes. The magnitude of these transformations correlates with the potency of vanadium derivatives to induce a cytotoxic-like effect: pervanadate > vanadate > vanadyl. These data suggest that the oxidation state and coordination geometry of vanadium determine the degree of the cytotoxicity.Facultad de Ciencias Exacta

    Effect of vanadium compounds on acid phosphatase activity

    Get PDF
    The direct effect of different vanadium compounds on acid phosphatase (ACP) activity was investigated. Vanadate and vanadyl but not pervanadate inhibited the wheat germ ACP activity. These vanadium derivatives did not alter the fibroblast Swiss 3T3 soluble fraction ACP activity. Using inhibitors of tyrosine phosphatases (PTPases), the wheat germ ACP was partially characterized as a PTPase. This study suggests that the inhibitory ability of different vanadium derivatives to modulate ACP activity seems to depend on the geometry around the vanadium atom more than on the oxidation state. Our results indicate a correlation between the PTPase activity and the sensitivity to vanadate and vanadyl cation.Facultad de Ciencias Exacta

    Biochemical properties and mechanism of action of a vanadyl(IV)-aspirin complex on bone cell lines in culture

    Get PDF
    A recently synthesized vanadyl(IV) complex with aspirin [VO(aspirin)ClH2O]2, has been thoroughly investigated by physicochemical techniques. In order to support the proposed structure, stoichiometry and the coordination sphere of the vanadium center, some studies such as elemental analysis, electronic (diffuse reflectance) and vibrational (infrared) spectroscopies, magnetic susceptibility, as well as the thermal behavior, were carried out. The bioactivity of the vanadium complex (VOAspi) was evaluated on two osteoblast-like cell lines in culture, being its cytotoxic effects stronger than the vanadyl cation as assessed by morphological changes and lipid peroxidation. These effects may be partially explained through the induction of the expression of Erks (Extracellular signal-regulated kinases) and the inhibition of the PTPases (Phosphotyrosine phosphatases) present in the cellular extracts.Centro de Química Inorgánic

    Biochemical properties and mechanism of action of a vanadyl(IV) – aspirin complex on bone cell lines in culture

    Get PDF
    A recently synthesized vanadyl(IV) complex with aspirin [VO(aspirin)ClH2O]2, has been thoroughly investigated by physicochemical techniques. In order to support the proposed structure, stoichiometry and the coordination sphere of the vanadium center, some studies such as elemental analysis, electronic (diffuse reflectance) and vibrational (infrared) spectroscopies, magnetic susceptibility, as well as the thermal behavior, were carried out. The bioactivity of the vanadium complex (VOAspi) was evaluated on two osteoblast-like cell lines in culture, being its cytotoxic effects stronger than the vanadyl cation as assessed by morphological changes and lipid peroxidation. These effects may be partially explained through the induction of the expression of Erks (Extracellular signal-regulated kinases) and the inhibition of the PTPases (Phosphotyrosine phosphatases) present in the cellular extracts

    The older preschoolers social skills development plot role play

    Get PDF
    Vanadium compounds are shown to have a mitogenic effect on fibroblast cells. The effects of vanadate, vanadyl and pervanadate on the proliferation and morphological changes of Swiss 3T3 cells in culture are compared. Vanadium derivatives induced cell proliferation in a biphasic manner, with a toxic-like effect at doses over 50 mM, after 24 h of incubation. Vanadyl and vanadate were equally potent at 2.5–10 mM. At 50 mM vanadate inhibited cell proliferation, whereas slight inhibition was observed at 100 mM of vanadyl. At 10 mM pervanadate was as potent as vanadate and vanadyl in stimulating fibroblast proliferation, but no effect was observed at lower concentrations. A pronounced cytotoxic-like effect was induced by pervanadate at 50 mM. All of these effects were accompanied by morphological changes: transformation of fibroblast shape from polygonal to fusiform; retraction with cytoplasm condensation; and loss of lamellar processes. The magnitude of these transformations correlates with the potency of vanadium derivatives to induce a cytotoxic-like effect: pervanadate > vanadate > vanadyl. These data suggest that the oxidation state and coordination geometry of vanadium determine the degree of the cytotoxicity.Facultad de Ciencias Exacta
    corecore