30,349 research outputs found

    Cosmic acceleration: Inhomogeneity versus vacuum energy

    Get PDF
    In this essay, I present an alternative explanation for the cosmic acceleration which appears as a consequence of recent high redshift Supernova data. In the usual interpretation, this cosmic acceleration is explained by the presence of a positive cosmological constant or vacuum energy, in the background of Friedmann models. Instead, I will consider a Local Rotational Symmetric (LRS) inhomogeneous spacetime, with a barotropic equation of state for the cosmic matter. Within this framework the kinematical acceleration of the cosmic fluid or, equivalently, the inhomogeneity of matter, is just the responsible of the SNe Ia measured cosmic acceleration. Although in our model the Cosmological Principle is relaxed, it maintains local isotropy about our worldline in agreement with the CBR experiments.Comment: LATEX, 7 pags, no figs, Honorable Mention in the 1999 Essay Competition of the Gravity Research Foundatio

    Na/K pump regulation of cardiac repolarization: Insights from a systems biology approach

    Get PDF
    The sodium-potassium pump is widely recognized as the principal mechanism for active ion transport across the cellular membrane of cardiac tissue, being responsible for the creation and maintenance of the transarcolemmal sodium and potassium gradients, crucial for cardiac cell electrophysiology. Importantly, sodium-potassium pump activity is impaired in a number of major diseased conditions, including ischemia and heart failure. However, its subtle ways of action on cardiac electrophysiology, both directly through its electrogenic nature and indirectly via the regulation of cell homeostasis, make it hard to predict the electrophysiological consequences of reduced sodium-potassium pump activity in cardiac repolarization. In this review, we discuss how recent studies adopting the Systems Biology approach, through the integration of experimental and modeling methodologies, have identified the sodium-potassium pump as one of the most\ud important ionic mechanisms in regulating key properties of cardiac repolarization and its rate-dependence, from subcellular to whole organ levels. These include the role of the pump in the biphasic modulation of cellular repolarization and refractoriness, the rate control of intracellular sodium and calcium dynamics and therefore of the adaptation of repolarization to changes in heart rate, as well as its importance in regulating pro-arrhythmic substrates through modulation of dispersion of repolarization and restitution. Theoretical findings are consistent across a variety of cell types and species including human, and widely in agreement with experimental findings. The novel insights and hypotheses on the role of the pump in cardiac electrophysiology obtained through this integrative approach could eventually lead to novel therapeutic and diagnostic strategies

    The properties of the extended warm ionised gas around low-redshift QSOs and the lack of extended high-velocity outflows

    Full text link
    (Abridged) We present a detailed analysis of a large sample of 31 low-redshift, mostly radio-quiet type 1 QSOs observed with integral field spectroscopy to study their extended emission-line regions (EELRs). We focus on the ionisation state of the gas, size and luminosity of extended narrow line regions (ENLRs), which corresponds to those parts of the EELR dominated by ionisation from the QSO, as well as the kinematics of the ionised gas. We detect EELRs around 19 of our 31 QSOs (61%) after deblending the unresolved QSO emission and the extended host galaxy light in the integral field data. We identify 13 EELRs to be entirely ionised by the QSO radiation, 3 EELRs are composed of HII regions and 3 EELRs display signatures of both ionisation mechanisms at different locations. The typical size of the ENLR is 10kpc at a median nuclear [OIII] luminosity of log(L([OIII])/[erg/s])=42.7+-0.15. We show that the ENLR sizes are least a factor of 2 larger than determined with HST, but are consistent with those of recently reported type 2 QSOs at matching [OIII] luminosities. The ENLR of type 1 and type 2 QSOs appear to follow the same size-luminosity relation. Furthermore, we show for the first time that the ENLR size is much better correlated with the QSO continuum luminosity than with the total/nuclear [OIII] luminosity. We show that ENLR luminosity and radio luminosity are correlated, and argue that radio jets even in radio-quiet QSOs are important for shaping the properties of the ENLR. Strikingly, the kinematics of the ionised gas is quiescent and likely gravitationally driven in the majority of cases and we find only 3 objects with radial gas velocities exceeding 400km/s in specific regions of the EELR that can be associate with radio jets. In general, these are significantly lower outflow velocities and detection rates compared to starburst galaxies or radio-loud QSOs.Comment: 34 page, 22 figures (slightly degraded in resolution), 10 tables, accepted for publication in A&A, minor corrections to match with the publisher versio

    The low-metallicity QSO HE 2158-0107: A massive galaxy growing by the accretion of nearly pristine gas from its environment?

    Full text link
    [abridged] The metallicities of AGN are usually well above solar in their NLR, often reaching up to several times solar in their broad-line regions. Low-metallicity AGN are rare objects which have so far always been associated with low-mass galaxies hosting low-mass BHs (M_BH<10^6Msun). In this paper we present IFS data of the low-redshift QSO HE 2158-0107 for which we find strong evidence for sub-solar NLR metallicities associated with a massive BH (M_BH~3x10^8Msun). The QSO is surrounded by a large extended emission-line region reaching out to 30kpc from the QSO in a tail-like geometry. We present optical and near-IR images and investigate the properties of the host galaxy. The SED of the host is rather blue, indicative of a significant young age stellar population formed within the last 1Gyr. A 3sigma upper limit of L_bulge<4.5x10^10Lsun for the H band luminosity and a corresponding stellar mass upper limit of M_bulge<3.4x10^10Msun show that the host is offset from the local BH-bulge relations. This is independently supported by the kinematics of the gas. Although the stellar mass of the host galaxy is lower than expected, it cannot explain the exceptionally low metallicity of the gas. We suggest that the extended emission-line region and the galaxy growth are caused by the infall of nearly pristine gas from the environment of the QSO host. Minor mergers of dwarf galaxies or the theoretically predicted smooth accretion of cold gas are both potential drivers behind that process. Since the metallicity of the gas in the NLR is much lower than expected, we suspect that the external gas has already reached the galaxy centre and may even contribute to the current feeding of the BH. HE 2158-0107 appears to represent a particular phase of substantial BH and galaxy growth that can be observationally linked with the accretion of external material from its environment.Comment: 14 pages, 12 figures, accepted for publication in A&

    Kink stability, propagation, and length scale competition in the periodically modulated sine-Gordon equation

    Get PDF
    We have examined the dynamical behavior of the kink solutions of the one-dimensional sine-Gordon equation in the presence of a spatially periodic parametric perturbation. Our study clarifies and extends the currently available knowledge on this and related nonlinear problems in four directions. First, we present the results of a numerical simulation program which are not compatible with the existence of a radiative threshold, predicted by earlier calculations. Second, we carry out a perturbative calculation which helps interpret those previous predictions, enabling us to understand in depth our numerical results. Third, we apply the collective coordinate formalism to this system and demonstrate numerically that it accurately reproduces the observed kink dynamics. Fourth, we report on a novel occurrence of length scale competition in this system and show how it can be understood by means of linear stability analysis. Finally, we conclude by summarizing the general physical framework that arises from our study.Comment: 19 pages, REVTeX 3.0, 24 figures available from A S o

    Breathers in inhomogeneous nonlinear lattices: an analysis via centre manifold reduction

    Get PDF
    We consider an infinite chain of particles linearly coupled to their nearest neighbours and subject to an anharmonic local potential. The chain is assumed weakly inhomogeneous. We look for small amplitude discrete breathers. The problem is reformulated as a nonautonomous recurrence in a space of time-periodic functions, where the dynamics is considered along the discrete spatial coordinate. We show that small amplitude oscillations are determined by finite-dimensional nonautonomous mappings, whose dimension depends on the solutions frequency. We consider the case of two-dimensional reduced mappings, which occurs for frequencies close to the edges of the phonon band. For an homogeneous chain, the reduced map is autonomous and reversible, and bifurcations of reversible homoclinics or heteroclinic solutions are found for appropriate parameter values. These orbits correspond respectively to discrete breathers, or dark breathers superposed on a spatially extended standing wave. Breather existence is shown in some cases for any value of the coupling constant, which generalizes an existence result obtained by MacKay and Aubry at small coupling. For an inhomogeneous chain the study of the nonautonomous reduced map is in general far more involved. For the principal part of the reduced recurrence, using the assumption of weak inhomogeneity, we show that homoclinics to 0 exist when the image of the unstable manifold under a linear transformation intersects the stable manifold. This provides a geometrical understanding of tangent bifurcations of discrete breathers. The case of a mass impurity is studied in detail, and our geometrical analysis is successfully compared with direct numerical simulations

    Optimal energy quanta to current conversion

    Full text link
    We present a microscopic discussion of a nano-sized structure which uses the quantization of energy levels and the physics of single charge Coulomb interaction to achieve an optimal conversion of heat flow to directed current. In our structure the quantization of energy levels and the Coulomb blockade lead to the transfer of quantized packets of energy from a hot source into an electric conductor to which it is capacitively coupled. The fluctuation generated transfer of a single energy quantum translates into the directed motion of a single electron. Thus in our structure the ratio of the charge current to the heat current is determined by the ratio of the charge quantum to the energy quantum. An important novel aspect of our approach is that the direction of energy flow and the direction of electron motion are decoupled.Comment: 9 pages, 6 figure

    El reto de vincular reputación online de destinos turísticos con competitividad

    Get PDF
    The aim of this study is to evidence how 2.0 conversations in social media impact the reputation of destinations. Additionally, the influence of co-creation practices is analysed. The five most competitive destinations worldwide have been chosen for the research. This paper demonstrates that monitoring social media is a challenge in tourism and is a strategic tool to support process decision making and for destination brand building in a sustainable way. Currently, there are several monitoring and analytic tools, but there is a lack of models to systematise and harness it for the Destination Management Organization (DMOs). In conclusion, how tourists play the main role in the competitiveness of Destinations with their experiences and opinions are considered, along with some keys for successful management of social media are given in the view of the results.info:eu-repo/semantics/publishedVersio
    corecore