2,609 research outputs found
Generation of Superposition States and Charge-Qubit Relaxation Probing in a Circuit
We demonstrate how a superposition of coherent states can be generated for a
microwave field inside a coplanar transmission line coupled to a single
superconducting charge qubit, with the addition of a single classical magnetic
pulse for chirping of the qubit transition frequency. We show how the qubit
dephasing induces decoherence on the field superposition state, and how it can
be probed by the qubit charge detection. The character of the charge qubit
relaxation process itself is imprinted in the field state decoherence profile.Comment: 6 pages, 4 figure
Lattice Simulation of Nuclear Multifragmentation
Motivated by the decade-long debate over the issue of criticality supposedly
observed in nuclear multifragmentation, we propose a dynamical lattice model to
simulate the phenomenon. Its Ising Hamiltonian mimics a short range attractive
interaction which competes with a thermal-like dissipative process. The results
here presented, generated through an event-by-event analysis, are in agreement
with both experiment and those produced by a percolative (non-dynamical) model.Comment: 8 pages, 3 figure
The Two-Dimensional Analogue of General Relativity
General Relativity in three or more dimensions can be obtained by taking the
limit in the Brans-Dicke theory. In two dimensions
General Relativity is an unacceptable theory. We show that the two-dimensional
closest analogue of General Relativity is a theory that also arises in the
limit of the two-dimensional Brans-Dicke theory.Comment: 8 pages, LaTeX, preprint DF/IST-17.9
Simulated ecology-driven sympatric speciation
We introduce a multi-locus genetically acquired phenotype, submitted to
mutations and with selective value, in an age-structured model for biological
aging. This phenotype describes a single-trait effect of the environment on an
individual, and we study the resulting distribution of this trait among the
population. In particular, our simulations show that the appearance of a double
phenotypic attractor in the ecology induces the emergence of a stable
polymorphism, as observed in the Galapagos finches. In the presence of this
polymorphism, the simulations generate short-term speciation, when mating
preferences are also allowed to suffer mutations and acquire selective value.Comment: 11 pages, 5 figures, 1 table, uses package RevTe
Aneurysmal Degeneration of the Brachial Artery after Vascular Access Creation: Surgical Treatment Results
True peripheral artery aneurysms proximal to a longstanding arteriovenous fistula is a well-recognized complication. Late aneurysmal degeneration is rare. This study analyzed the characteristics, therapeutic options, and outcomes of true donor brachial artery aneurysms (DBAA) after arteriovenous fistula (AVF) for hemodialysis. We retrospectively collected the data of patients with DBAA after AVF creation, surgically repaired between January 2001 and September 2015. We excluded patients with pseudoaneurysms, anastomotic aneurysms, and infected aneurysms. We recorded patient's demographics, type of access, aneurysm characteristics, symptoms, treatment, and follow-up. Ten patients were treated for aneurysmal degeneration of the brachial artery. Average aneurysm diameter was 37.5 mm. All cases had, at least, one previous distal AVF, ligated or thrombosed, at the time of diagnosis. The first access was created in mean 137 months before the diagnosis of DBAA. Nine patients had previous medical history of renal transplant and were under immunosuppressive therapy. All patients were symptomatic at the time of diagnosis. In all cases, the treatment was aneurysmectomy followed by interposition bypass. One patient developed a postoperative hematoma with the need of surgical drainage. At 50 months of follow-up, one patient was submitted to percutaneous angioplasty due to an anastomotic stenosis. No other complications occurred during the entire follow-up period (mean: 69 months). The pathogenesis underlying DBAA remains unclear. Increased blood flow after AVF creation, immunosuppressive therapy, and ligation/thrombosis of the AVF may contribute to aneurysm formation. Surgical treatment by aneurysmectomy and bypass, with autogenous conducts, is a safe and effective option.info:eu-repo/semantics/publishedVersio
Superconducting and normal-state interlayer-exchange-coupling in LaSrMnO-YBaCuO_{0.67}_{0.33}{3}$ epitaxial trilayers
The issue of interlayer exchange coupling in magnetic multilayers with
superconducting (SC) spacer is addressed in LaSrMnO
(LSMO) - YBaCuO (YBCO) - LaSrMnO
(LSMO) epitaxial trilayers through resistivity, ac-susceptibility and
magnetization measurements. The ferromagnetic (FM) LSMO layers possessing
in-plane magnetization suppress the critical temperature (T of the
c-axis oriented YBCO thin film spacer. The superconducting order, however,
survives even in very thin layers (thickness d 50 {\AA}, 4
unit cells) at T 25 K. A predominantly antiferromagnetic (AF) exchange
coupling between the moments of the LSMO layers at fields 200 Oe is seen in
the normal as well as the superconducting states of the YBCO spacer. The
exchange energy J ( 0.08 erg/cm at 150 K for d = 75
{\AA}) grows on cooling down to T, followed by truncation of this growth
on entering the superconducting state. The coupling energy J at a fixed
temperature drops exponentially with the thickness of the YBCO layer. The
temperature and d dependencies of this primarily non-oscillatory J
are consistent with the coupling theories for systems in which transport is
controlled by tunneling. The truncation of the monotonic T dependence of
J below T suggests inhibition of single electron tunneling across
the CuO planes as the in-plane gap parameter acquires a non-zero value.Comment: Accepted for publication in Phys. Rev.
Radiative accretion shocks along nonuniform stellar magnetic fields in classical T Tauri stars
(abridged) AIMS. We investigate the dynamics and stability of post-shock
plasma streaming along nonuniform stellar magnetic fields at the impact region
of accretion columns. We study how the magnetic field configuration and
strength determine the structure, geometry, and location of the shock-heated
plasma. METHODS. We model the impact of an accretion stream onto the
chromosphere of a CTTS by 2D axisymmetric magnetohydrodynamic simulations. Our
model takes into account the gravity, the radiative cooling, and the
magnetic-field-oriented thermal conduction. RESULTS. The structure, stability,
and location of the shocked plasma strongly depend on the configuration and
strength of the magnetic field. For weak magnetic fields, a large component of
B may develop perpendicular to the stream at the base of the accretion column,
limiting the sinking of the shocked plasma into the chromosphere. An envelope
of dense and cold chromospheric material may also develop around the shocked
column. For strong magnetic fields, the field configuration determines the
position of the shock and its stand-off height. If the field is strongly
tapered close to the chromosphere, an oblique shock may form well above the
stellar surface. In general, a nonuniform magnetic field makes the distribution
of emission measure vs. temperature of the shocked plasma lower than in the
case of uniform magnetic field. CONCLUSIONS. The initial strength and
configuration of the magnetic field in the impact region of the stream are
expected to influence the chromospheric absorption and, therefore, the
observability of the shock-heated plasma in the X-ray band. The field strength
and configuration influence also the energy balance of the shocked plasma, its
emission measure at T > 1 MK being lower than expected for a uniform field. The
above effects contribute in underestimating the mass accretion rates derived in
the X-ray band.Comment: 11 pages, 11 Figures; accepted for publication on A&A. Version with
full resolution images can be found at
http://www.astropa.unipa.it/~orlando/PREPRINTS/sorlando_accretion_shocks.pd
- …