42 research outputs found

    Distinctive expansion of potential virulence genes in the genome of the oomycete fish pathogen Saprolegnia parasitica.

    Get PDF
    Oomycetes in the class Saprolegniomycetidae of the Eukaryotic kingdom Stramenopila have evolved as severe pathogens of amphibians, crustaceans, fish and insects, resulting in major losses in aquaculture and damage to aquatic ecosystems. We have sequenced the 63 Mb genome of the fresh water fish pathogen, Saprolegnia parasitica. Approximately 1/3 of the assembled genome exhibits loss of heterozygosity, indicating an efficient mechanism for revealing new variation. Comparison of S. parasitica with plant pathogenic oomycetes suggests that during evolution the host cellular environment has driven distinct patterns of gene expansion and loss in the genomes of plant and animal pathogens. S. parasitica possesses one of the largest repertoires of proteases (270) among eukaryotes that are deployed in waves at different points during infection as determined from RNA-Seq data. In contrast, despite being capable of living saprotrophically, parasitism has led to loss of inorganic nitrogen and sulfur assimilation pathways, strikingly similar to losses in obligate plant pathogenic oomycetes and fungi. The large gene families that are hallmarks of plant pathogenic oomycetes such as Phytophthora appear to be lacking in S. parasitica, including those encoding RXLR effectors, Crinkler's, and Necrosis Inducing-Like Proteins (NLP). S. parasitica also has a very large kinome of 543 kinases, 10% of which is induced upon infection. Moreover, S. parasitica encodes several genes typical of animals or animal-pathogens and lacking from other oomycetes, including disintegrins and galactose-binding lectins, whose expression and evolutionary origins implicate horizontal gene transfer in the evolution of animal pathogenesis in S. parasitica

    Development of rural areas on the post-state farms terrains

    No full text
    Przedstawiono wieloaspektową interpretację pojęcia rozwoju obszarów wiejskich w odniesieniu do terenów, na których w przeszłości występował duży udział sektora państwowego w rolnictwie. Rozważania teoretyczne wsparto analizą praktycznych aspektów rozwoju z wykorzystaniem danych statystycznych Agencji Nieruchomości Rolnych oraz źródeł literaturowych.The article presents the theoretical aspects of rural areas development and the practical implications of this development arising from managing the post-state farms resources. Among others, changes in ownership of the post-state farms. property and their implications for the production function of land and its infrastructural management were analysed

    Identification and characterization of the chitin synthase genes from the fish pathogen Saprolegnia parasitica

    No full text
    Saprolegnia parasitica is a pathogenic oomycete responsible for severe fish infections. Despite its low abundance in the cell wall of S. parasitica, chitin is essential for hyphal growth as the inhibition of its biosynthesis leads to highly reduced growth. Here we identified and characterized chitin synthases (CHS) from S. parasitica as potential targets for anti-oomycete drugs. Bioinformatics analyses allowed the identification of six different putative Chs genes in the genome of the pathogen. The total number of genes was confirmed by Southern blot analysis and their expression levels were determined by quantitative PCR. Four of the six Chs genes were expressed in the mycelium, while the two others exhibited undetectable levels of expression. The mycelium was highly sensitive to the addition of nikkomycin Z (NZ) in the culture medium, which led to a decreased amount of chitin in the cell wall by up to 40% in the conditions tested, and to the formation of abnormal branching structures in the hyphae. The presence of NZ increased the expression level of one of the genes, Chs3, suggesting that the corresponding product is compensating the disruption of chitin biosynthesis in the hyphae. In addition, the activity of isolated CHS was strongly inhibited by NZ in vitro. Altogether our data indicate the importance of CHS for the vegetative growth of S. parasitica and demonstrate that these enzymes represent promising targets for the control of diseases caused by oomycetes.Elzbieta Rzeszutek, Sara M. Díaz-Moreno and Vincent Bulon
    corecore