20 research outputs found

    Activation of GCN2 kinase by ribosome stalling links translation elongation with translation initiation.

    Get PDF
    Ribosome stalling during translation has recently been shown to cause neurodegeneration, yet the signaling pathways triggered by stalled elongation complexes are unknown. To investigate these pathways we analyzed the brain of C57BL/6J-Gtpbp2(nmf205)(-/-) mice in which neuronal elongation complexes are stalled at AGA codons due to deficiencies in a tRNA(Arg)UCU tRNA and GTPBP2, a mammalian ribosome rescue factor. Increased levels of phosphorylation of eIF2α (Ser51) were detected prior to neurodegeneration in these mice and transcriptome analysis demonstrated activation of ATF4, a key transcription factor in the integrated stress response (ISR) pathway. Genetic experiments showed that this pathway was activated by the eIF2α kinase, GCN2, in an apparent deacylated tRNA-independent fashion. Further we found that the ISR attenuates neurodegeneration in C57BL/6J-Gtpbp2(nmf205)(-/-) mice, underscoring the importance of cellular and stress context on the outcome of activation of this pathway. These results demonstrate the critical interplay between translation elongation and initiation in regulating neuron survival during cellular stress. eLife 2016 Apr 16;5:e14295

    Synthesis of Resolvin E1 and Its Conformationally Restricted Cyclopropane Congeners with Potent Anti-Inflammatory Effect

    Get PDF
    RvE1 (1) is an endogenous lipid mediator with very potent anti-inflammatory activity, which is due to the inhibition of neutrophil chemotaxis and inflammatory cytokine production and the promotion of macrophage phagocytosis. On the basis of the conformational analysis of RvE1, we designed its four cyclopropane congeners (2a-d), in which the conformationally flexible terminal C1-C4 moiety of RvE1 was rigidified by introducing stereoisomeric cyclopropanes. The four congeners and also RvE1 were efficiently synthesized via a common synthetic route. The evaluation of the anti-inflammatory effects of the compounds in mice resulted in the identification of trans-beta-CP-RvE1 (2d), which was significantly more active than RvE1, as a potential lead for antiinflammatory drugs of a novel mechanism of action

    Synthesis of Resolvin E3, a Proresolving Lipid Mediator, and Its Deoxy Derivatives : Identification of 18-Deoxy-resolvin E3 as a Potent Anti-Inflammatory Agent

    Get PDF
    We synthesized RvE3 and its deoxy derivatives, 17-deoxy-RvE3 and 18-deoxy-RvE3, by a common route via Sonogashira coupling as a key step. The evaluation of their anti-inflammatory activities revealed that 18-deoxy-RvE3 was remarkably more potent than the parent RvE3 and significantly active at a 300 fg dose in mice; additionally, 17-deoxy-RvE3 was significantly less potent than the parent RvE3. For the first time, we found that the 17-hydroxy group of RvE3 is very important for anti-inflammatory activity

    Synthesis of Resolvin E1 and Its Conformationally Restricted Cyclopropane Congeners with Potent Anti-Inflammatory Effect

    No full text
    [Image: see text] RvE1 (1) is an endogenous lipid mediator with very potent anti-inflammatory activity, which is due to the inhibition of neutrophil chemotaxis and inflammatory cytokine production and the promotion of macrophage phagocytosis. On the basis of the conformational analysis of RvE1, we designed its four cyclopropane congeners (2a–d), in which the conformationally flexible terminal C1–C4 moiety of RvE1 was rigidified by introducing stereoisomeric cyclopropanes. The four congeners and also RvE1 were efficiently synthesized via a common synthetic route. The evaluation of the anti-inflammatory effects of the compounds in mice resulted in the identification of trans-β-CP-RvE1 (2d), which was significantly more active than RvE1, as a potential lead for anti-inflammatory drugs of a novel mechanism of action
    corecore