16 research outputs found

    Noticeable Reverse Shift in the Melting Temperatures of Benzene and Carbon Tetrachloride Confined within the Micropores and Mesopores of Hydrophobic Carbons

    Get PDF
    Carbon aerogels contain both mesopores and micropores. In this study, benzene/CCl4 was adsorbed in the pores of carbon aerogels (both mesopores and micropores) and their phase behaviours were examined using differential scanning calorimetry. The bulk solid benzene melted at 278 K and the melting temperatures of benzene confined inside the mesopores and micropores of carbon aerogels were 258 and 293 K, respectively. Although the melting temperature depression of condensates in mesopores is well known, the observed elevation of the melting temperature for micropores is very limited in the strongly interacted system. Similar melting behaviours were observed for the confined CCl4; depression by 45 K in mesopores and elevation by 48 K in micropores showed about two times the change as compared with that of confined benzene.ArticleADSORPTION SCIENCE & TECHNOLOGY. 31(2-3):145-151 (2013)journal articl

    Conducting linear chains of sulphur inside carbon nanotubes

    Get PDF
    Despite extensive research for more than 200 years, the experimental isolation of monatomic sulphur chains, which are believed to exhibit a conducting character, has eluded scientists. Here we report the synthesis of a previously unobserved composite material of elemental sulphur, consisting of monatomic chains stabilized in the constraining volume of a carbon nanotube. This one-dimensional phase is confirmed by high-resolution transmission electron microscopy and synchrotron X-ray diffraction. Interestingly, these one-dimensional sulphur chains exhibit long domain sizes of up to 160 nm and high thermal stability (similar to 800 K). Synchrotron X-ray diffraction shows a sharp structural transition of the one-dimensional sulphur occurring at similar to 450-650 K. Our observations, and corresponding electronic structure and quantum transport calculations, indicate the conducting character of the one-dimensional sulphur chains under ambient pressure. This is in stark contrast to bulk sulphur that needs ultrahigh pressures exceeding similar to 90 GPa to become metallic.ArticleNATURE COMMUNICATIONS. 4:2162 (2013)journal articl

    Essential Role of Viscosity of SWCNT Inks in Homogeneous Conducting Film Formation

    No full text
    Newly developed inorganic single-wall carbon nanotube (SWCNT) inks of the Zn/Al complex and colloidal silica give a quite homogeneous SWCNT film on the polyethylene terephthalate (PET) substrate by the bar-coating method, whereas the surfactant-based SWCNT inks of sodium dodecyl sulfonate (SDS) and sodium dodecyl benzene sulfonate (SDBS) cannot give a homogeneous film. The key properties of SWCNT inks were studied for the production of homogeneous SWCNT films. The contact angle and surface tension of the inorganic dispersant-based SWCNT inks were 70° and 72 mN m<sup>–1</sup>, respectively, being close to those of water (71.5° and 71 mN m<sup>–1</sup>). The viscosity was significantly higher than that of water (0.90 mPa·s), consequently, providing sufficient wettability, spreadability, and slow drying of the ink on the substrate, leading to homogeneous film formation. On the other hand, the surfactant dispersant-aided SWCNT inks have the contact angle and surface tension twice lower than the inorganic dispersant-based SWCNT inks, guaranteeing better wettability and spreadability than the inorganic dispersant-based inks. However, the small viscosity close to that of water induces a heterogeneous flow of SWCNT ink on rapid drying, leading to inhomogeneous film formation
    corecore