22 research outputs found

    Report on Selected Standardization Activities of the IEEE BASC and of the ATM Forum

    Get PDF
    This document describes the standardization activities which were performed during the first year period of the joint project named ﲁ Standardization and Research Project on an ATM/B-ISDN Switching Fabric System that is being jointly performed by Protocol Engineering Center (PEC) of Electronics and Telecommunications Research Institute (ETRI), Institute for Systems Research (ISR) of the University of Maryland at College Park (UMCP) and Modacom Co., Ltd. These standardization activities are related to the IEEE Bus Architecture Standards Committee (BASC) meetings and ATM Forum Meetings. This document also provides the general information about the IEEE Standards meetings and ATM Forum Standards meetings.<P

    ATM/LAN Access Switch (ALAX): System Architecture

    Get PDF
    This document contains the hardware information for the ATM LAN Access Switch (ALAX) that was done as a collaborative research and development effort by the Institute for Systems Research at the University of Maryland, College Park, Protocol Engineering Center in Electronics and Telecommunications Research Institute, and Modacom Co., Ltd. of Korea.<P

    Distinct firing activities of the hypothalamic arcuate nucleus neurons to appetite hormones

    Get PDF
    The hypothalamic arcuate nucleus (Arc) is a central unit that controls the appetite through the integration of metabolic, hormonal, and neuronal afferent inputs. Agouti-related protein (AgRP), proopiomelanocortin (POMC), and dopaminergic neurons in the Arc differentially regulate feeding behaviors in response to hunger, satiety, and appetite, respectively. At the time of writing, the anatomical and electrophysiological characterization of these three neurons has not yet been intensively explored. Here, we interrogated the overall characterization of AgRP, POMC, and dopaminergic neurons using genetic mouse models, immunohistochemistry, and whole-cell patch recordings. We identified the distinct geographical location and intrinsic properties of each neuron in the Arc with the transgenic lines labelled with cell-specific reporter proteins. Moreover, AgRP, POMC, and dopaminergic neurons had different firing activities to ghrelin and leptin treatments. Ghrelin led to the increased firing rate of dopaminergic and AgRP neurons, and the decreased firing rate of POMC. In sharp contrast, leptin resulted in the decreased firing rate of AgRP neurons and the increased firing rate of POMC neurons, while it did not change the firing rate of dopaminergic neurons in Arc. These findings demonstrate the anatomical and physiological uniqueness of three hypothalamic Arc neurons to appetite control

    Distinct Firing Activities of the Hypothalamic Arcuate Nucleus Neurons to Appetite Hormones

    Get PDF
    The hypothalamic arcuate nucleus (Arc) is a central unit that controls the appetite through the integration of metabolic, hormonal, and neuronal afferent inputs. Agouti-related protein (AgRP), proopiomelanocortin (POMC), and dopaminergic neurons in the Arc differentially regulate feeding behaviors in response to hunger, satiety, and appetite, respectively. At the time of writing, the anatomical and electrophysiological characterization of these three neurons has not yet been intensively explored. Here, we interrogated the overall characterization of AgRP, POMC, and dopaminergic neurons using genetic mouse models, immunohistochemistry, and whole-cell patch recordings. We identified the distinct geographical location and intrinsic properties of each neuron in the Arc with the transgenic lines labelled with cell-specific reporter proteins. Moreover, AgRP, POMC, and dopaminergic neurons had different firing activities to ghrelin and leptin treatments. Ghrelin led to the increased firing rate of dopaminergic and AgRP neurons, and the decreased firing rate of POMC. In sharp contrast, leptin resulted in the decreased firing rate of AgRP neurons and the increased firing rate of POMC neurons, while it did not change the firing rate of dopaminergic neurons in Arc. These findings demonstrate the anatomical and physiological uniqueness of three hypothalamic Arc neurons to appetite control

    ALAX- A P1355-Based Architecture for An ATM LAN Access Switch, with Application to ATM Onboard Switching

    Get PDF
    We draw attention to the new IEEE P1355 Standard for Heterogeneous InterConnect as a possible platform to support several onboard processing functions, including onboard communications and onboard ATM switching. The main features of IEEE P1355 are illustrated through a discussion of the basic principles and protocol architecture of ALAX, the ATM LAN Access Switch, currently under design in the Laboratory for Advanced Switching Technologies at the University of Maryland, College Park

    IEEE 1355-Based Architecture for an ATM Switch: A Case for Onboard Switching and Processing

    Get PDF
    The recent evolution of the communication scenario has profound implications for the role of communication satellites within the communication infrastructure. Indeed, it raises the possibility that the satellite be viewed not merely as a repeater but rather as a network node in its own right in a hopefully integrated space/terrestrial network. We draw attention to the new IEEE 1355 Standard for Heterogeneous Inter-Connect as a possible platform to support several onboard processing functions, including onboard communications and onboard ATM switching. The IEEE 1355 is a new serial bus standard which enables high- performance, scalable, modular, parallel systems to be constructed with low system integration cost. This IEEE 1355- based approach can satisfy many of the requirements of onboard communications and onboard ATM switching, e.g., size, flexibility, reliability, fault-tolerance, and high communication processing speeds. This is made possible by using the highly integrated 1355 chipsets and performing protocol processing with multiple transputers in parallel. The IEEE 1355 approach also allows for easy expandability owing to its inherent design modularity

    ATM LAN Access Switch (ALAX): Protocol Architecture (LAN Emulation Version)

    No full text
    This document describes the protocol architecture of the LAN Emulation Version of the ATM LAN Access Switch (ALAX). The main function of the ALAX is to provide an interface between legacy LAN and ATM world giving network managers the option of gradually integrating ATM technology into their existing networks. To provide this functionality to the ALAX system, we decided to implement two versions of the ALAX system. One is the LAN emulation version and the other is the Multi Protocol Over ATM version. The most important design characteristics of the ALAX is the adoption of the IEEE P1355 Standard for Heterogeneous Inter Connect (HIC)[1] as the data communication paths within the ALAX switching system. This makes it possible to design the PC- based parallel architectured high performance switching system in conformance with emerging open technologies and related standards. The protocols needed within the LAN Emulation version of the ALAX include LAN Emulation, Bridging Relay function, P1355, MAC Mapping Layer (MML), MAC, LAN Physical, AAL5, ATM and ATM Physical Layer. Some other protocols needed in the ALAX include the ATM signaling which is defined in ATM Forum UNI 3.0[2] , Network Management (SNMP or CMIP)[3], Graphic User Interface and some main control functions of the ALAX. The details of all these protocols, the relationship among these protocols and the implementations of these protocols are described in this document.<P

    Single-Step Fast Tissue Clearing of Thick Mouse Brain Tissue for Multi-Dimensional High-Resolution Imaging

    No full text
    Recent advances in optical clearing techniques have dramatically improved deep tissue imaging by reducing the obscuring effects of light scattering and absorption. However, these optical clearing methods require specialized equipment or a lengthy undertaking with complex protocols that can lead to sample volume changes and distortion. In addition, the imaging of cleared tissues has limitations, such as fluorescence bleaching, harmful and foul-smelling solutions, and the difficulty of handling samples in high-viscosity refractive index (RI) matching solutions. To address the various limitations of thick tissue imaging, we developed an Aqueous high refractive Index matching and tissue Clearing solution for Imaging (termed AICI) with a one-step tissue clearing protocol that was easily made at a reasonable price in our own laboratory without any equipment. AICI can rapidly clear a 1 mm thick brain slice within 90 min with simultaneous RI matching, low viscosity, and a high refractive index (RI = 1.466), allowing the imaging of the sample without additional processing. We compared AICI with commercially available RI matching solutions, including optical clear agents (OCAs), for tissue clearing. The viscosity of AICI is closer to that of water compared with other RI matching solutions, and there was a less than 2.3% expansion in the tissue linear morphology during 24 h exposure to AICI. Moreover, AICI remained fluid over 30 days of air exposure, and the EGFP fluorescence signal was only reduced to ~65% after 10 days. AICI showed a limited clearing of brain tissue >3 mm thick. However, fine neuronal structures, such as dendritic spines and axonal boutons, could still be imaged in thick brain slices treated with AICI. Therefore, AICI is useful not only for the three-dimensional (3D) high-resolution identification of neuronal structures, but also for the examination of multiple structural imaging by neuronal distribution, projection, and gene expression in deep brain tissue. AICI is applicable beyond the imaging of fluorescent antibodies and dyes, and can clear a variety of tissue types, making it broadly useful to researchers for optical imaging applications
    corecore